
VC2 - Providing Awareness in Off-The-Shelf Version
Control Systems ∗

Daniel Machado1 Nuno Preguiça2 Carlos Baquero1 J. Legatheaux Martins2

1 DI/CCTC, Universidade do Minho 2 CITI/DI, FCT, Universidade Nova de Lisboa

ABSTRACT
Version control systems have been used to help groups
of people working at the same or distributed sites to
cooperatively create documents. In particular, these
systems are very popular in distributed collaborative
software development. However, even using these sys-
tems, users often perform concurrent changes that re-
quire manual conflict resolution. Important causes for
this situation are the lack of mutual awareness and co-
ordination, among developers, and reluctance to com-
mit unstable modifications. The paper addresses this
problem by providing a tool that integrates with off-
the-shelf version control systems and monitors filesys-
tem accesses to relevant files in order to enhance the
awareness among developers. With V C2 users can be
aware of uncommitted changes made by remote users;
receive request to commit their own changes; be advised
to update their local versions. While the final decision
is always under user control, the team is made aware of
the level of risk when delaying commits and updates.

INTRODUCTION
The development of team projects often requires the
use of tools to aid the coordination and synchroniza-
tion of work between members. There is a subgroup of
these tools known as Version Control (or Revision Con-
trol) Systems, many of them are widely established and
used, specially in software development projects. These
systems divide in two main subgroups: those using the
client-server model (CVS, SVN, . . . ) and those using
the distributed model (Bazaar, SVK, BitKeeper, . . . ).

In the client-server model, the files of a project are lo-
cated on a server repository. Each user can checkout
her local copy from the repository, work locally in the
copy and submit changes back to the server. At any
time she can also check the server for new versions of
files submitted by other users.

In the distributed model each user has her own local
repository with a copy of the project. She may submit
changes to her local repository, and at any time, two or
more users may choose to merge their local copies.

Motivation

∗This work was partially supported by FCT/MCTES with
FEDER co-funding, project POSC/59064/2004.

While working in a cooperative project under version
control tools, users end up concurrently updating the
same files. In a client-server system, one of the users
will commit first to the central server and the second
one will have to incorporate these changes into her files
before committing successfully. Version control systems
have mechanisms to automatically merge these concur-
rent changes when different areas of the files are modi-
fied. When the same areas of the files are modified, the
user has to manually solve the detected conflicts before
being able to commit her changes to the central server.

The sole usage of version control tools is not enough
to avoid this problem. In typical usage scenarios, these
situations occur with some frequency. However, solv-
ing conflicts may be problematic, specially if the users
have made a big number of changes that have not been
committed for a long time. These problems may lead
users to be reluctant to engage in cooperative projects
and even to avoid parallel development [8].

To minimize these problems, users could follow some
“best-practices” guidelines, such as regularly keeping
their local copies up-to-date and committing as soon as
possible, as this approach decreases the probability of
conflicts [5]. The problem is that these guidelines are
often contrary to good working practices for cooperative
projects – e.g. users may only want to commit changes
that leave the project in a consistent state, therefore
delaying their commits for long periods of time such as
days or weeks [13].

The goal of this work is to provide awareness of other
users’ activities between synchronization points, help-
ing users to coordinate their work and avoid the need
for time consuming conflict resolution tasks. Unlike pre-
vious works, where awareness is provided in an applica-
tion that is different from the application used to edit
the shared documents [3, 12] or that require specific
editors [14, 11], our solution allows users to continue
using their preferred unmodified editors. Awareness in-
formation is provided as users access files with any ap-
plication. Moreover, our solution also does not require
any additional infrastructure, building on the existing
version control system to propagate the needed infor-
mation.

The remainder of this paper is organized as follows: Re-
lated work and the semantics of version control systems



are reviewed in the next sections. Section 4 presents the
proposed architecture and Section 5 illustrates a typi-
cal use case. Implementation details and evaluation are
reviewed in Section 6. Discussion and future work in
Section 7 is followed by Conclusions.

RELATED WORK
Awareness information has long been identified as im-
portant for the success of cooperative activities by pro-
viding users with an understanding of other users’ ac-
tivities [6]. In groupware systems, a large number of
awareness tools have been proposed for synchronous col-
laboration, such as multi-user scrollbars [1], telepointers
and radar views [9], remote screen view [17], etc. These
tools allow a user to have some information about the
current activities of other users, but they are not ap-
propriate for asynchronous collaboration.

Version control systems (e.g. CVS [4], SVN [16] and
Bazaar [2]) provide the basic support for team projects,
by maintaining and controlling the evolution of file ver-
sions for the project files. Basic support for awareness
is available, with users being able to include comments
when they commit their changes. CVS also includes
an additional mechanism that can be used to provide
awareness information: CVS watches. When using CVS
watches, users must announce their intents of modify-
ing a file beforehand (by executing a special command).
Users can register their interest on specific files and be
notified by email when someone announces the intent of
modifying it. Some tools, such as Eclipse’s Team CVS,
automatically issues the required CVS commands when
the user starts editing a file and it allows a user to check
which users are modifying some file.

The BSCW system [3] is a web-based system that in-
cludes a version control system to manage shared files.
In this system, when some action (check-out, check-
in) is executed an event is recorded. The system can
present a list of recent event to users when they con-
nect to the system. In [7], the authors introduce a tool
for integrating notification and chat with the CVS sys-
tem. In this system, users are informed when some user
commits changes to a file, with events being propagated
using an event-dissemination system. Unlike our sys-
tem, these systems presents no awareness about modi-
fications before they are committed.

In State Treemap [12], the authors propose an aware-
ness widget that allows users to visualize which files are
being concurrently modified (leading to a potential con-
flict) and which locally modified files have already been
committed (leading to a conflict). This widget has been
integrated in a platform for supporting virtual teams of
architects. The Palant́ır [14] system provides similar
information for files stored in version control systems,
relying on an event notification system for propagating
information among users. The authors have created
wrappers for SVN, RCS and CVS, with events being
propagated when edit/update/commit commands are

executed. The authors have also developed a plug-in
for Eclipse, allowing awareness information to be pre-
sented in Eclipse. The Jazz [10] system also provides
similar information, as an extension to Eclipse.

In Gasper [11], the authors propose a generic mecha-
nism for propagating limited information about changes
being performed. Awareness information is provided in
the editors in the form of annotations — e.g. if some
user is modifying a method in a code file, other users
could see an annotation about this fact in their user
interface.

Several other systems have been designed for providing
awareness information in the context of collaborative
software development (see [15] for a survey). These sys-
tems can be divided in two groups. The first (including
basic CVS watches, State Treemap and Palant́ır) re-
quires the use of an additional tool for checking the
awareness information. Besides the problem of con-
vincing users to use an additional tool, this approach
has the drawback of requiring users to explicitly check
for awareness information when they start editing the
shared files (as there is no connection between the edit-
ing activity and the tool that provides the awareness
information). The second group (including Eclipse’s
Team CVS watches, Palant́ır, Jazz and Gasper) pro-
vides the awareness information in the context of a spe-
cific editor. This approach is interesting but it forces
users to use a specific editor. Additionally, it requires
the plug-ins to be updated when a new version of the
editor is released. In our work, we provide awareness
information for any editor, thus allowing users to con-
tinue using their preferred editors. Additionally, unlike
previous works that require specific support from the
version control systems or that rely on an additional
infrastructure, we propagate the required information
using files stored in the version control system. Thus,
our approach can be easily deployed with existing ver-
sion control system.

THE SEMANTICS OF VERSION CONTROL
In this section we present an overall view of how ver-
sion control works. At this point we will only consider
the centralized model (CVS, SVN, . . . ) and leave the
distributed model as future work. In this presentation,
to avoid too much complexity we will not consider the
adding and removing of files and folders from the repos-
itory and the conflicts that may arise from these oper-
ations.

In version control systems, a user must start by checking
out files that are stored in the repository, thus creating
a local private copy. At any moment, the user may
update her local copy against the latest version stored
in the repository. The user may also modify her local
copy, one or more times. After modifying her files, the
user may commit her changes to the repository.

There are two situations that may lead to a conflict if



the user modifies her local copy:

• The user modifies a file that was remotely modified
by some user that has not yet committed her changes
to the repository.

• The user modifies a file that is outdated against the
current version on the repository.

Conversely, conflicts may also arise if a remote user
modifies an old version of a file that has been locally
modified, either it has already been committed or not.

In order to help the user avoiding the situations that
may lead to conflicts, our tool will provide advance
warning about conflict-leading actions. Thus, when a
users starts accessing a file that has been modified else-
where, a notification will be presented to the user sug-
gesting an alternative action. For example, if the user
accesses a file that is being concurrently modified by
some other user, the user is notified of the fact and may
ask the other user to update the file.

SYSTEM ARCHITECTURE
Approach
The Version Control Control tool (V C2) provides aware-
ness for cooperative editing activity by combining filesys-
tem probing and activity dissemination among the group
using metafiles stored in the version control system.

Filesystem probing can be achieved by adding code to
kernel filesystem routines, with kernel tapping mecha-
nisms such as Fuse [18] and Fist [20], or by subscribing
to filesystem events on kernels that support them, e.g.
INotify[19]. Since V C2 notifications do not require
blocking or delaying file operations, kernel access is not
mandatory and event subscription can suffice. This also
means that users are warned of actions that can lead to
conflicts but are free to ignore those warnings and have
full accesses to the files.

A second aspect concerns the diffusion of information
within the developer’s group. While other systems choose
to use external mechanisms of dissemination or tailor
their own dissemination service, in V C2 we choose not
to add any additional mechanism. This is possible be-
cause an existing communication mechanism is already
available in the version control mechanism.

V C2 uses the existing version control system to dissem-
inate additional control information across the hosts. It
suffices to enclose this information as special metafiles
in the project tree and exchange them with the exist-
ing commit and update functionality. This also allows
reuse of authenticated channels, say ssh, that might al-
ready be prepared for communication with the project
server. Finally, this approach provides awareness infor-
mation even if users are not connected at the same time,
because the control information is maintained on the
server. For example, if a user has started to change her
local copy of the file but then she has stopped working

and disconnected her computer, the information about
this activity is still stored in the server. If another user
(that could have been disconnected) starts accessing the
file, he will be notified of the potential problem.

Architecture
The typical setup, when using the tool with client-server
version control, comprises a CVS/SVN server in a host-
ing server machine and two or more users in a given
number of other machines – we will refer to these as
clients. Client machines must have connectivity and
access to the server, either by ssh or specific CVS/SVN
ports. There is no need for connectivity among client
machines. There is no impact even if they are all hidden
by firewalls.

Any client machine will just have to support standard
CVS/SVN client tools and, in addition, have installed
local support for either Fuse or Inotify The V C2 ap-
proach tolerates the presence of standard CVS/SVN
clients that cannot introspect the filesystem and run
the tool. As expected, activity on those clients will not
be made aware to others and vice-versa.

Each client machine runs a V C2 daemon that acts on
filesystems events, creating separate threads for any
event that requires GUI interaction or communication
to the server.

The daemon is implemented as a Java user level process.
It makes use of a filesystem notification layer that can
be provided by either FUSE probes or Inotify events.
Once aware of all system calls to the filesystem, our
tool can check if the accessed files are under control of
any version control system, and try to detect behaviors
that may potentially lead to conflict scenarios. If such
a case is detected it will alert the user suggesting a
recommended action to take.

To start using our tool it suffices to have a working setup
of the supported version control systems and start the
Java V C2 daemon. At this point the user can check-
out her projects to directories inside a controlled local
filesystem. After that, every time she opens or closes a
file, the system will check if that file is under control of
the version control system. All other files are ignored
and are transparent to V C2.

If a file is under control, our tool will check its status and
alert the user when necessary. The status of the file is
kept in a metafile which is saved in the repository. The
first time the tool checks the status of a file, it creates
the associated metafile if none exists. Each time the
system consults or changes a metafile, it will update
it from the repository and if there are changes it will
commit immediately.

At the moment, the only information on the metafile is
the number of users with uncommitted changes, and the
number of users requesting the commit of those changes.



Later in this paper, we will elaborate on additional in-
formation that could be used.

When opening a file, our tool will consult the metafile
to check for uncommitted changes made by other users.
If there are any, it will alert the user of the situation
and ask if she wants to request the updating of that file.
Also, if the local copy of the file is outdated compared
to the version on the repository, it will alert the user
and ask if she wants to update to that version.

When closing a file, it will check if there were any
changes made, by checking the status against the repos-
itory version. If the file was locally changed it will in-
crement the number of changers on the metafile. The
file will also be added to a list of uncommitted files, that
is regularly checked for requests.

User alerts are implemented by dialog boxes that pop
up on the screen, usually with a yes/no question.

As it was described, there is no need for server side in-
tervention on CVS/SVN platforms, allowing the use of
any off-the-shelf public server. Additionally, as it relies
only on common version control management, it should
be immediate to include support for other version con-
trol system.

V C2 is avalilable at http://sourceforge.net/projects/vc2/.

USAGE EXAMPLE
In this section we show a small example of how the tool
is used and how it helps the coordination of a team
project.

Suppose there are three developers working on an Ad-
dressBook application in C++. Alice is developing the
user interface, Bob is working mostly on the core of the
application, and Charlie is developing a storage module
to save application data. The structure of the project
is the following:

AddressBook/inc/core.h
AddressBook/inc/storage.h
AddressBook/inc/UI.h
AddressBook/src/core.cpp
AddressBook/src/storage.cpp
AddressBook/src/UI.cpp
AddressBook/help.html

The developers start by checking out the project from
the CVS repository into a local directory, and then be-
gin working on it. Suppose the following action are
executed:

1. Bob changes core.h and core.cpp

2. Alice which has been working on UI.cpp now needs
to know how to retrieve phone numbers and consults
core.h. As she opens the file, a popup alerts her that
there is one user with uncommitted changes on that
file, asking if she wants to send an update request

Figure 1. Alice being alerted that the file she wants to
access has been modified by some other user. In this
case, Alice is using the Eclipse IDE.

(Figure 1). She agrees.

3. A popup appears on Bob’s screen saying that one
user is requesting an update on core.h, and asking if
he wants to commit (Figure 2). Bob agrees and the
file is committed.

4. Alice, who decided to work on something else, now
returns to her previous task. As she opens core.h, a
popup alerts her that her version of the file is out-
dated, asking if she wants to update. She agrees and
the file is now up-to-date.

5. Charlie, who’s been working on the storage has com-
mitted a new version of storage.cpp and is already
working on a new one.

6. After running some tests, Bob believes there may be
a bug on the storage, and decides to consult stor-
age.cpp. He is alerted to the fact that there is a user
with uncommitted changes on that file, and agrees to
request an update. He is also alerted to the fact that
his version of the file is outdated, but decides not to
update immediately and waits until Charlie commits
his recent changes.

7. Charlie is alerted about one user requesting him to
commit his changes on storage.cpp, but as he is cur-
rently fixing a bug, he decides not to commit until he
finishes.

This is a little example of how awareness can help the
coordination of software development. Its simplicity
may not fully expose the importance that a small in-
crease in awareness can have in team development, but
this becomes clear when we consider the number of con-
flicts that occur in real situations.

IMPLEMENTATION
We have created two implementations of the filesystem
layer of our tool using different approaches. The first
is based on Fuse [18] and the second one on INotify



Figure 2. Bob being asked to update his uncommitted
version of the file (as a result of Alice’s request). In this
case, Bob is using the VIM editor.

[19]. Each has its own advantages and disadvantages,
that are discussed throughout this section.

Fuse
File System in Userspace (Fuse) is a Unix kernel mod-
ule that allows non-privileged users to create virtual
filesystems that run in user space [18]. The Fuse mod-
ule intercepts system calls to the filesystem and redi-
rects them to code that runs at user level. There are
many projects using Fuse to create a virtual filesystem
with different purposes.

This solution has the advantage of intercepting the filesys-
tem calls, allowing to execute code before returning re-
sults to the applications. This could be used, for ex-
ample, to update the local copy of a file before allowing
the application to read its contents. These kind of func-
tionality is not used in our tool, as we have decided to
just provide awareness information.

Inotify
Inotify [19] is a Linux kernel subsystem that provides
filesystem event notification (a similar mechanism exists
in the Mac OS X system). With Inotify it is possi-
ble to monitor directories and files for events such as
open, close, create or delete. An application may reg-
ister itself to be notified for events occurring inside a
set of directories, which is much more efficient than ac-
tively searching for changes or interposing code in the
execution if the file system calls (as in Fuse).

Benchmarking
In this section we do some performance analysis on our
tool, measuring the overhead of using our tool. For this,
we used a project with 100 text files with a total of 1.7
MB (average file size: 17 KB).

As described earlier, each time the user opens a file,
our tool will check if it is under version control, and in
this the case it will check its status. This check is asyn-
chronous, which means the user can keep opening files

Table 1. Benchmarking results (in milliseconds per file)
for the 1st run, the mean of 10 runs and standard devi-
ation.

x1 x σ
Native 0.206 0.185 0.014
Inotify 0.208 0.220 0.054

Inotify+CVS 0.209 0.299 0.285
Inotify+SVN 0.399 0.383 0.557

Fuse 11.913 11.569 0.203
Fuse+CVS 24.906 13.898 3.688
Fuse+SVN 33.179 14.174 6.502

while another thread performs the check. We measured
the time spent to open and read all the files (using the
command: cat * >/dev/null) in the following scenar-
ios: on the native filesystem; Fuse vs Inotify; normal
files vs files under CVS control vs files under SVN con-
trol. In all cases the repository is on a remote machine.
On Table 1, we present the results for the first run, fol-
lowed by the mean value of 10 runs and the standard
deviation.

From the results in Table 1 we can observe that the
overhead of using Inotify is almost null. Since notifi-
cations do not delay the filesystem call flow, the over-
head is only due to the increased load on the machine
and the running of additional tasks. The system asyn-
chronously verifies if some awareness information must
be provided. The delay to provide such information
depends on the latency to the repository server, as the
client’s daemon must check if there is any recent control
information on the server.

It was not unexpected to confirm that there is a some
time overhead associated to filesystem interception in
Fuse. In particular, on the first access to each file,
when the metafiles do not exist and have to be created.
It could be argued that the loss of performance caused
by the virtual filesystem does not affect the normal de-
velopment of a project, since the overhead in opening a
single file is not perceived by the user in an interactive
session (the incurred delay is below 15ms). However,
there are still situations where it can have a greater
impact. The initial checkout of a large project will be
considerably slower on the virtual filesystem.

In the current V C2 implementation there is no situation
in which we opted to delay or deny user actions on files.
There are cases in which one could want to do so, for
instance if we wanted users to have mandatory interac-
tions with the V C2 GUI in order to proceed with the
opening of files. In such cases, filesystem interception
would be the only solution. Under the present V C2 in-
teraction model the best solution is clearly to resort to
filesystem notifications and avoid the overhead incurred
by file system interception.

DISCUSSION AND FUTURE WORK
The simple and generic architecture of our tool makes
it easy to extend it with new features. As we mentioned
before, there are still many features worth of develop-



ment. In this section we discuss some of these features.

Knowing the number of users that are changing/requesting
a file is useful, but this can be further improved by show-
ing a list with these users’ names. Along with this list
we could also associate messages with these actions by
having a small text input field in the popup dialogs.
These would be stored on the metafiles and displayed
in the alert messages. This can provide a lightweight
communication channel with a history that may be in-
tegrated in the version control system’s logs (as in [7]).

As discussed before, it may not be convenient for devel-
opers to immediately commit their source code. This
is not the case of documentation and other kind of
files. For these we could define user configured prop-
erties such as auto-commit or auto-update that would
automatically commit a changed file, or automatically
update outdated files, and consequently eliminate most
of the need for user interaction.

One of the main goals of our tool is automatic integra-
tion with minimum user interaction required. The users
do not need to explicit consult the state of the project’s
files to receive awareness information. Instead, they
work normally and eventually receive alerts for poten-
tially dangerous situations. Still, our alert-based ap-
proach is a bit intrusive, creating a new window for
each alert. We are studying the possibility of provid-
ing an alternative interface, where all alerts could be
cumulatively displayed in a single, less intrusive, popup
window.

CONCLUSIONS
Conflicts are bound to occur when users engage in col-
laborative development of code (or text) in standard
revision control frameworks. Since conflicts are often
troublesome to solve, users try to avoid them by fre-
quently issuing commits or by negotiating in parallel
channels, like instant messaging applications and email.
These actions are preventive and time consuming, and
they are necessary due to the lack of mutual awareness
among developers.

In this paper we introduce a system that addresses this
problem, by greatly improving the level of awareness
without forcing the commitment of unstable versions.
The solution depicted in V C2 is general and indepen-
dent from the actual version control system in use. It
currently runs on CVS and SVN and it is straightfor-
ward to adapt it to other version control tools. More
important, V C2 does not require any intervention on
the server side, thus the solution can be deployed with
public servers, such as SourceForge. Our solution also
works independently of the editor used by users, thus
allowing users to continue using their preferred applica-
tions.

REFERENCES
1. Ronald M. Baecker, Dimitrios Nastos, Ilona R. Posner, and

Kelly L. Mawby. The user-centred iterative design of

collaborative writing software. pages 775–782, 1995.

2. Bazaar. Bazaar version control, 2007. http://bazaar-vcs.org/.

3. R. Bentley, W. Appelt, U. Busbach, E. Hinrichs, D. Kerr,
K. Sikkel, J. Trevor, and G. Woetzel. Basic support for
cooperative work on the world wide web. International Journal
of Human Computer Studies: Special issue on Novel
Applications of the WWW, 46(6):827–856, Spring 1997.

4. Per Cederqvist et al. Version management with CVS, 2007.
http://www.cvshome.org/docs/manual.

5. S. Dekeyser and R. Watson. Extending Google Docs to
Collaborate on Research Papers. Technical report, The
University of Southern Queensland, Australia, 2006.

6. Paul Dourish and Victoria Bellotti. Awareness and coordination
in shared workspaces. In Proceedings of the 1992 ACM
conference on Computer-supported cooperative work, pages
107–114. ACM Press, 1992.

7. G. Fitzpatrick, P. Marshall, and A. Phillips. CVS integration
with notification and chat: lightweight software team
collaboration. Proceedings of the 2006 20th anniversary
conference on Computer supported cooperative work, pages
49–58, 2006.

8. R.E. Grinter. Using a configuration management tool to
coordinate software development. Proceedings of conference on
Organizational computing systems, pages 168–177, 1995.

9. Carl Gutwin, Mark Roseman, and Saul Greenberg. A usability
study of awareness widgets in a shared workspace groupware
system. In CSCW ’96: Proceedings of the 1996 ACM
conference on Computer supported cooperative work, pages
258–267, New York, NY, USA, 1996. ACM Press.

10. Susanne Hupfer, Li-Te Cheng, Steven Ross, and John Patterson.
Introducing collaboration into an application development
environment. In CSCW ’04: Proceedings of the 2004 ACM
conference on Computer supported cooperative work, pages
21–24, New York, NY, USA, 2004. ACM Press.

11. Claudia-Lavinia Ignat, Gérald Oster, Pascal Molli, and Hala
Skaf-Molli. Gasper: A collaborative writing mode for avoiding
blind modifications. Research Report RR-6204, LORIA – INRIA
Lorraine, may 2007.

12. Pascal Molli, Hala Skaf-Molli, and Christophe Bouthier. State
treemap: an awareness widget for multi-synchronous groupware.
In 7th International Workshop on Groupware - CRIWG’2001,
Darmstadt, Germany, September 2001.

13. R. Robbes and M. Lanza. Versioning systems for evolution
research. Proceedings of IWPSE, pages 155–164, 2005.

14. Anita Sarma, Zahra Noroozi, and Andre van der Hoek. Palant́ır:
raising awareness among configuration management workspaces.
In ICSE ’03: Proceedings of the 25th International Conference
on Software Engineering, pages 444–454, Washington, DC,
USA, 2003. IEEE Computer Society.

15. M.A.D. Storey, D. Čubranić, and D.M. German. On the use of
visualization to support awareness of human activities in
software development: a survey and a framework. Proceedings
of the 2005 ACM symposium on Software visualization, pages
193–202, 2005.

16. Subversion. Next-generation open source version control, 2007.
http://subversion.tigris.org/.

17. Kimberly Tee, Saul Greenberg, and Carl Gutwin. Providing
artifact awareness to a distributed group through screen
sharing. In CSCW ’06: Proceedings of the 2006 20th
anniversary conference on Computer supported cooperative
work, pages 99–108, New York, NY, USA, 2006. ACM Press.

18. Wikipedia. Filesystem in userspace — wikipedia, the free
encyclopedia, 2007. [Online; accessed 30-May-2007].

19. Wikipedia. Inotify — wikipedia, the free encyclopedia, 2007.
[Online; accessed 6-June-2007].

20. Erez Zadok and Jason Nieh. Fist: a language for stackable file
systems. In Proceedings of the Annual Technical Conference
on 2000 USENIX Annual Technical Conference, Berkeley, CA,
USA, 2000. USENIX Association.


