
Scalable Data Processing for Community
Sensing Applications?

Heitor Ferreira, Sérgio Duarte, Nuno Preguiça, and David Navalho

CITI-DI-FCT-UNL, Caparica, Portugal

Abstract. Participatory Sensing is a new computing paradigm that
aims to turn personal mobile devices into advanced mobile sensing net-
works. For popular applications, we can expect a huge number of users
to both contribute with sensor data and request information from the
system. In such scenario, scalability of data processing becomes a ma-
jor issue. In this paper, we present a system for supporting participatory
sensing applications that leverages cluster or cloud infrastructures to pro-
vide a scalable data processing infrastructure. We propose and evaluate
three strategies for data processing in this architecture.

Key words: participatory sensing, distributed processing, mobile com-
puting

1 Introduction

Participatory Sensing [2, 5] aims to leverage the growing ubiquity of sensor ca-
pable mobile phones as the basis for performing wide-area sensing tasks. Taking
advantage of people’s movements in their daily routines, Participatory Sensing
promises an enormous potential for gathering valuable data at a fraction of the
cost associated with the deployment of dedicated sensor infrastructures. Ex-
amples of this potential are well illustrated in [8, 11, 16], which concern road
conservation and traffic monitoring, based on accelerometer and GPS readings
collected by mobile devices.

Realizing the potential of Participatory Sensing poses several challenges, in
particular, that of large-scale support, since the appeal of the paradigm can make
its applications popular, with a very large number of users contributing with
sensor data and obtaining information from the system. Many of the application
examples found in the literature [8, 11, 16] use centralized architectures with a
single server to process sensor data received from mobile users. These approaches
are appropriate only for small-scale, proof-of-concept experiments.

For supporting large communities, a single server will be insufficient to pro-
cess all data and reply to all queries. Thus, there is a need for partitioning data
processing among multiple node. One possible approach is to use a decentral-
ized solution composed by nodes scattered across the Internet. For example,
in [9], we have proposed such a system, with data processing being performed
in a peer-to-peer network with nodes contributed by participants in the system.

? This work was supported partially by project #PTDC/EIA/76114/2006 and PEst-
OE/EEI/UI0527/2011 - CITI/FCT/UNL/2011-12.

2 Heitor Ferreira, Sérgio Duarte, Nuno Preguiça, and David Navalho

Such completely decentralized solutions involve a lot of complexity for achieving
good performance and fault tolerance.

An alternative approach is to leverage current cluster and cloud computing
infrastructures and perform data processing in such infrastructures. Several so-
lutions for data processing in these environments have been proposed recently
[6, 13, 4], but few are appropriate for processing streams of continuous data,
as required by real-time participatory sensing applications. The solutions fit for
processing continuous data (e.g. [4]) only focus on server execution, while a Par-
ticipatory Sensing system can start data processing in the mobile nodes.

In this paper we present the Cloud 4 Sensing (C4S) system for supporting
participatory sensing applications, allowing application developers to define the
computation performed in the system. This includes the computations performed
in the mobile nodes and in the system servers executing either in a cluster or
in a cloud computing infrastructure. Computation is partitioned across server
nodes according to a distribution strategy that defines how data is acquired by
the system, where it is processed, and how it is aggregated. We propose three
distribution strategies for processing data and evaluate these strategies in the
context of a traffic monitoring application.

If the way programmers express computations is mostly inherited from our
previous work [9], C4S runs in a completely different computation infrastructure
(cluster/cloud vs. peer-to-peer). This leads to differences in the way information
is propagated by mobile nodes and processed in the servers. Additionally, unlike
our previous work, we propose several different distribution strategies.

The rest of the paper is structured as follows. Section 2 provides an overview
of the C4S system. Section 3 details the three processing strategies proposed in
this paper, followed by the results of their experimental evaluation in Section 4.
The paper concludes with an overview of related work and some conclusions,
respectively, in Sections 5 and 6.

2 System Overview

2.1 System Architecture

The C4S system architecture (Figure 1) comprises two kinds of nodes. A large
number of mobile nodes, equipped with sensors, is the main source of data
for the system, whereas a much smaller set of data center nodes forms a fixed
infrastructure that provides computing, storage and networking resources.

Mobile nodes, typically smartphones, are expected to have limited compu-
tational power, battery life and communications capabilities. As such, they will
mainly support user interaction and run data acquisition and simple processing
services on behalf of the applications hosted at the fixed infrastructure. Mobile
nodes do not interact directly, and connect to the fixed infrastructure to upload
sensory data and obtain processed information via a frontend service.

Fixed nodes are deemed to be server-grade machines, well connected by a
high-throughput and low-latency data center network. They form a loose overlay
network, where the key characteristic is that they all know and can interact
with each other. Moreover, each fixed node is assigned with a set of virtual

Scalable Data Processing for Community Sensing Applications 3

geographic positions, chosen randomly from each of the target sensing areas.
These locations are the basis for supporting decentralized processing strategies
based on geographic partitioning. And, they also determine how mobile nodes
bind to the fixed infrastructure.

2.2 Data Model

Applications access participatory sensing data by issuing queries over virtual
tables - the main high-level data abstraction provided by C4S for naming a
collection of data with a particular schema and semantics. Virtual tables have
a global scope within a particular instance of the C4S platform. Issuing a query
over a virtual table serves two purposes, it allows applications to request data
and, at the same time, restrict its scope to a subset of the whole, in the form of
spatial and temporal constraints.

While flexible regarding the actual schema, virtual tables handle geo-referenced
and time-stamped data. As such, virtual table data is represented as a set of
named attributes and, as a common denominator, each data tuple must include
a temporal attribute, i.e., a timestamp, and a spatial component, in the form of
physical coordinates or a geographic extent. A query over a virtual table will then
result in a sequence of data tuples to be forwarded to the requesting application,
confined to the requested geographic area and time period.

Virtual tables are purely logical entities, in the sense they do not necessarily
need to refer to data already present in some physical storage medium. Inter-
facing applications with persisted (stored) data is just one of the facets of this
construct. Virtual tables can also target data that does not yet exist and that
may never be stored, including data intended to be produced and consumed
with (near) realtime requirements. Moreover, another central concept to virtual
tables is that they refer to data produced as a result of applying a set of trans-
formations to raw sensor inputs and other virtual tables. As such, virtual tables
embody a generic inference mechanism that creates high-order data from simpler
constituents. This design is intended to facilitate and promote data sharing and
cooperation among otherwise unrelated applications.

2.3 Data transformation

Data transformation is achieved by specifying the execution of a pipeline of suc-
cessive operations. Starting with raw sensor samples, or data from other virtual
tables, a derived class of data can be produced, based on the output of a com-
bination of pipeline operators. Data transformations typically involve mapping,
aggregation and condition detection operations. Mapping adds new attributes to
individual data elements, such as tagging a GPS reading with a street segment
identifier. Aggregation combines several samples into one and often involves sta-
tistical operators, such as count, average, etc., over temporal data snapshots.
Finally, condition detection generates new data indicative of a particular note-
worthy event, such as a congested street.

The TrafficHotspots virtual table, c.f. Definition 1, exemplifies the inference
logic for an application devoted to realtime traffic monitoring, which is later de-
tailed. In this example, starting with discrete GPS readings collected by mobile

4 Heitor Ferreira, Sérgio Duarte, Nuno Preguiça, and David Navalho

Definition 1 TrafficHotspots virtual table specification
sensorInput(GPSReading)
dataSource {

process{ GPSReading r ->

r.derive(MappedSpeed, [boundingBox: model.getSegmentExtent(r.segmentId)])
}
timeWindow(mode: periodic, size:10, slide:10)
groupBy([’segmentId’]){

aggregate(AggregateSpeed) { MappedSpeed m ->

sum(m, ’speed’, ’sumSpeed’)
count(m, ’count’)

} } }
globalAggregation {

timeWindow(mode: periodic, size:10, slide:10)
groupBy([’segmentId’]){

aggregate(AggregateSpeed) { AggregateSpeed a ->

avg(a, ’sumSpeed’, ’count’, ’avgSpeed’)
} }
classify(AggregateSpeed) { AggregateSpeed a ->

if(a.count > COUNT THRESHOLD &&
a.avgSpeed <= SPEED THRESHOLD * model.maxSpeed(a.segmentId))

a.derive(Hotspot, [confidence: Math.min(1, a.count/COUNT THRESHOLD*0.5)])
} }

nodes, a stream of Hotspot tuples is generated, representing real-time detections
of congested road segments, when certain thresholds are exceeded. In between,
data is progressively transformed into intermediate forms, such as MappedSpeed
and AggregateSpeed representing for each road segment, respectively, an individ-
ual speed measurement and the average car speed for the last 10 seconds. In
section 4 we detail this application. The domain-specific language for specifying
virtual tables and data transformations is detailed elsewhere [9].

A key aspect about data processing in virtual tables is that it is split between
two transformation pipeline stages. One, dataSource, processes data locally avail-
able to the node, i.e., data already stored locally, or data that is being acquired
or uploaded by mobile nodes. The globalAggregation merges the contributions of
several nodes. Simple pipelines, with no globalAggregation stage can run entirely
in mobile devices, and produce transformed data to feed another pipeline.

The two pipeline stages abstract the C4S distributed data processing facet.
Consequently, their operation is very closely tied to the distribution strategy
employed, which among other things determines the shape and properties of the
data aggregation infrastructure used, as discussed further on.

2.4 Data Dissemination

When a node issues a query, the system instantiates data processing pipelines in
the necessary fixed infrastructure and mobile nodes, depending on the geographic
coverage of the standing queries, and according to the distribution strategy in
use, as discussed in the next section. For returning query results to clients, C4S
adopts a push-based model that leverages a publish/subscribe, content-based
routing substrate. So, issuing a query translates to the client subscribing data
conforming to a particular pattern/type, confined to a certain geographic area
of interest and time period.

Scalable Data Processing for Community Sensing Applications 5

Routing Overlay

Mobile Node

Fixed Node

App 1 Ctx

App 1
Client

App 2 Ctx

Core Services

App 2
Client

Core Services

App 1 Ctx App 2 Ctx

Fig. 1. C4S Architecture
Fig. 2. Snapshot of the traffic hotspots ap-
plication for the Lisbon metropolitan area,
showing congested spots in dark/red

C4S is primarily designed for handling queries covering a large fraction of the
target sensing areas. Supporting many “narrow” queries is made possible and
efficient by merging them whenever they overlap geographically. For simplicity,
the extent of the resulting compound query is used. The goal is to minimize the
number of pipeline instantiations and avoid redundant data processing. To that
end, the publish/subscribe substrate is used to filter out the query results that
are outside of a client’s request.

3 Distribution Strategies

Distribution strategies specify how the pipeline specification is materialized in
the C4S infrastructure. Each strategy determines how data is acquired by the sys-
tem, where it is processed, and how it is aggregated. Different strategies strive for
different strengths. We next describe the three strategies we have implemented
in the C4S platform.

3.1 RTree

The main rational behind RTree (Random Tree) is to leverage a simple parti-
tioning of the acquired sensor data, backed by a random tree to aggregate and
process data towards a root node of the fixed infrastructure.

In RTree, each mobile node maintains a long lasting association to a particu-
lar fixed node, established by selecting the fixed node with virtual position closest
to a static reference location that defines the usual, general whereabouts of the
mobile node. As a result, acquired data is immediately available for processing at
each fixed node, but it is also partitioned among the fixed nodes without taking
into account the actual spatial attributes of each sample. Therefore, the deter-
mining aspect of RTree is that every fixed node potentially hosts data relevant
to any particular query.

In a given RTree instance (associated with a particular query), fixed nodes are
organized into a random tree of a chosen degree, where they perform the same
role and will instantiate both the data source and global aggregation pipeline
stages. Since a node cannot determine if it has complete information for a partic-
ular spatial extent, data aggregation and processing may have to proceed along
the tree until the root is reached, leading, potentially, to increased processing

6 Heitor Ferreira, Sérgio Duarte, Nuno Preguiça, and David Navalho

latency and raising issues of load inbalance. In particular, this can be an issue
for virtual tables whose inference logic requires detecting the absence of certain
data patterns. Early detections can, however, be published as soon as they are
produced in any point of the aggregation tree. A straightforward way to ad-
dress load balancing issues in RTree is to build a new random aggregation tree
periodically to average the load of the nodes over time.

3.2 QTree

In QTree (Quad Tree), the idea is to do an a priori geographic partition of
the data by performing a regular recursive subdivision of the sensing space into
quadrants. Under this scheme, acquired sensor data is committed and bound
to any of the fixed nodes that lie in the smallest quadrant that fully encloses
the data’s coordinates or geographic extent. Therefore, in QTree, dataSource
pipeline stages will process data samples acquired by any mobile node. As for
the global aggregation pipeline stages, QTree organizes them into a random
quad tree, which is built, recursively, by picking a random node located in each
subquadrant.

The key characteristic of QTree lies in that all the data processed in the
deepest levels of the aggregation tree pertains to the immediate neighborhood
of the processing node. This enables QTree to potentially detect highly localized
phenomena early in the aggregation tree. As in RTree, load balancing issues may
be mitigated by rebuilding the aggregation tree periodically.

3.3 NMap

NMap (Node Map) partitions data based on a geographic hashing approach.
Each incoming data tuple is hashed to a geographic position and assigned to the
fixed node closest to that point - its neareast neighbour. The hashing function can
be tailored to the type and attributes of the sensor data, provided it preserves
data locality. For instance, data that refers to a geographic extent can use the
extent’s centroid as the input for the hashing function. Besides spatial proximity,
other attributes can be used to cluster data and enhance the notion of proximity.
The idea is to process geographically related data tuples on the same node to
reduce the overall computation latency and, consequently, maximize the chances
for earlier pattern detection.

NMap uses a bottom up approach to build the aggregation structure. Ini-
tially, in each node, the dataSource pipeline will process data samples acquired
by any mobile node. The resulting data tuples are then hashed and forwarded to
the corresponding nearest neighbour nodes, where they are processed by their
respective global aggregation pipelines. Since data can be re-maped at the global
aggregation stage with new coordinates, the process can be repeated to create
a multi-level aggregation path that converges at some virtual rendezvous point.
Provided the nodes share a consistent membership view of the fixed node infras-
tructure, closely related data tuples (according to the hashing functions used)
will flow towards the same final processing node. As such, NMap provides a
distributed processing model that has similarities to the Map/Reduce model [6].

Scalable Data Processing for Community Sensing Applications 7

In NMap, load-balancing issues may arise if too much data is allowed to flow
towards a small subset of the available processing nodes. This could happen,
for instance, as a consequence of particular patterns in the sensory data or the
hashing functions used. To address this issue, besides using different hashing
functions to different virtual tables, one possible solution is to change periodically
the virtual geographical positions assigned to the nodes.

4 Case-study and Experimental Evaluation

Performance metrics of the three distribution strategies were evaluated using
a case-study application that concerns realtime road traffic monitoring. The
application, Traffic hotspots, provides information about the congested areas
based on GPS data, sampled at periodic intervals by in-transit vehicles. It relies
on the TrafficHotspots virtual table, presented earlier as Definition 1, which
supports querying for congestion detections computed from average speeds.

In the TrafficHotspots’s dataSource pipeline stage, GPS samples are aug-
mented to include the identifier of the road segment the vehicle is in. In this
case, as this step requires accessing a database of road segments, it runs in the
fixed nodes. For each road segment, an AggregateSpeed sample is generated with
aggregate information of the cars in the segment. These AggregateSpeed samples
are propagated every 10 seconds for processing by the globalAggregation stage.
In that stage, a sliding window of the AggregateSpeed samples received in the last
10 seconds is maintained. For each road segment, the total number of cars and
the average car speed is computed. With this information, an hotspot is signaled
for some segment if the number of cars in the segment and their average speed
crosses some thresholds (that depend on the type of road). A client application
can use these detections, for instance, to render maps of the current state of the
target sensing area, as shown in Figure 2.

4.1 Evaluation

For the system evaluation, we use the Open Street Map [18] vectorial represen-
tation of the road network of Lisbon city. This data is used to map geographic
coordinates to road segments, to determine the spatial extent of segments and
their associated road type. The model used in the evaluation divides roads, as
needed, into segments with a maximum of 1 Km and uses separate segments for
each driving direction. Each road is assigned an expected (uncongested) driving
speed according to its type: highway, primary to tertiary and residential.

In the simulation experiments, 50000 mobile nodes populate the sensing area.
They simulate in-transit vehicles, according to a traffic model, and report GPS
readings every 5 seconds, as they follow the assigned paths. They interact with
the infrastructure frontend, resulting in the delivery of raw GPS data with no
latency. For the fixed insfrastructure, besides a single server solution, we eval-
uated performance using 50 and 500 fixed nodes. In this case, fixed nodes are
assigned virtual positions distributed randomly across the sensing area.

A common clock is used to timestamp readings; any effects of clock desyn-
chronization are not considered.

8 Heitor Ferreira, Sérgio Duarte, Nuno Preguiça, and David Navalho

 0

 5

 10

 15

 20

 5 10 15 20 25

Pr
oc

es
se

d
Tu

pl
es

 (%
)

25 Most Loaded Nodes

RTree 50
QTree 50
NMap 50

RTree 500
QTree 500
NMap 500

Fig. 3. Workload distribution

 0

 5

 10

 15

 20

 5 10 15 20 25

Pr
oc

es
se

d
Tu

pl
es

 (%
)

25 Most Loaded Nodes

RTree 50
RTree 500

Fig. 4. Workload - RTree Rebalance

Traffic is modeled by emulating a fleet of vehicles driving through random
routes. The maximum speed for a given segment is the same value used for
congestion detection and depends on the road type. An average speed, for each
road segment at a given time, is determined by its current car density and used
to generate the random speed individually for each vehicle, according to a normal
distribution. In the experiments performed, congestion occurs in segments with
a density of at least 50 vehicles. Vehicle paths are determined by choosing a
random start position and sequence of road intersections; a new path is assigned
whenever a vehicle reaches its destination. Figure 2 shows a rendering of the
traffic simulation.

In the following results, we scrutinize the effects of a single query covering
25% of the overall simulation area in an area with high density of mobile nodes.
Note that having a query over a large area is what happens when multiple
queries over nearby small areas (e.g., several points in the city downtown) are
merged in our algorithms. The set of metrics captured was averaged over 5 runs,
corresponding to different fixed node placements.

4.2 Workload Distribution

We have started by analyzing how the effort to evaluate a query is spread among
the fixed nodes in the different distribution strategies. For comparison, we have
computed the effort that a solution with a single central node would experience.

The workload is measured as the number of data tuples processed in both
dataSource and globalAggregation stages at each node. Figure 3 shows the work-
load distribution using the different distribution strategies, when considering 50
and 500 fixed nodes, for the top 25 most loaded nodes. The workload is presented
as a percentage of the workload experienced by a single, centralized node.

The results show that when using the proposed strategies, both QTree’s and
NMap’s most loaded node processes only a fraction of the tuples of a single
node solution (below 9% when considering 50 fixed nodes, and below 5% when
considering 500). These values show the scalability of our solution - for example,
C4S could still work properly even if the workload of the system exceeds by 10×
the workload that a single node can process.

RTree presents a clearly skewed load distribution, with some nodes (those
at the top of the aggregation) doing significantly more work. To address this

Scalable Data Processing for Community Sensing Applications 9

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70
D

et
ec

tio
n

(%
)

Latency (seconds)

Centralized
RTree 50
QTree 50
NMap 50

RTree 500
QTree 500
NMap 500

Fig. 5. Detection latency

load-balancing issue, RTree can rebuild the aggregation tree from time to time.
Figure 4 summarizes the results when the tree is rebuilt every 10 minutes (for a
total of 2 hours). It shows clearly that just a few tree updates are very effective
at better spreading the load among the infrastructure nodes.

4.3 Detection Latency

Detection latency measures the lag between the occurrence of a segment con-
gestion and its detection by the system. Transient congestions (lasting less than
20 seconds) were not considered for the evaluation. As the traffic patterns pro-
duced by the traffic model are highly dynamic compared to real world conditions,
with frequent short lived congestions, these experiments represent a challenging
scenario to the system.

Figure 5 plots the detection latency for the accumulated level of successful
detections. Results show clearly that QTree and NMap detect congestions faster
than RTree, regardless of the number of considered fixed nodes. Their perfor-
mance is comparable to the centralized solution. In RTree aggregation progress
is slower because it is maily driven by the degree of the tree, rather than by
strong spatial coherence, as in QTree or NMap.

Failures We implemented a simple failure recovery mechanism consisting in
rebuilding the aggregation tree periodically or when failures exceed a certain
threshold in RTree and QTree. For NMap, sensory data is distributed disregard-
ing the failed nodes upon their detection.

Our experiments allowed us to conclude that different distribution strategies
present different behaviors that are hard to reflect in average results. Figure 6
shows a selected run for each distribution strategy that exemplifies the impact
of failures, when observed.

In RTree, the influence in the success rate observed depends hugely on the
position of nodes failed in the aggregation tree. When nodes are mostly leaf
nodes, little to no influence is observed, as data redundancy still allows detections
to be observed. On the other hand, when nodes higher in the tree hierarchy are
affected, the impact in the success rate is high.

QTree exhibits a similar behavior with stronger consequences for failures at
lower levels and weaker consequences for failures at higher levels. The former
can be explained by the fact that sensory data for a given region is processed
by fewer nodes - the failure of a few of these nodes has an important impact in
the final result. The latter can be explained by the fact that by aggregating the

10 Heitor Ferreira, Sérgio Duarte, Nuno Preguiça, and David Navalho

 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 100 120 140 160 180 200 220 240
Su

cc
es

s
R

at
e

(%
)

Time (seconds)

RTree 500 fixed
QTree 500 fixed
NMap 500 fixed

Fig. 6. Success rate in the presence of node failures

sensory data closer to the leaves, detections are often performed in lower levels
of the tree, which makes inconsequent a failure in an higher level node.

NMap is the extreme case of impact in the failure of nodes - the failure of
a node will always lead to a drop in the success rate, as results computed by
that node are lost. However, as the recovery solution implemented is simpler,
the success rate returns to the initial values quickly.

5 Related Work

Our work has been influenced by works in different areas.
Participatory sensing has become popular recently [2, 5], and a large num-

ber of supporting systems have been designed. Some systems (e.g., BikeNet [7],
PEIR [17], CarTel [11, 8]) rely on a centralized approach, where mobile nodes
propagate sensing data to a central node responsible for processing information.
Our system is also based on a centralized approach, but unlike previous works
focus on the scalability of data processing in the servers.

In other systems, computation is performed by a combination of fixed nodes
scattered across the Internet (e.g., COSMOS [15], SenseWeb [10], 4Sensing [9]).
Some of these solutions address the scalability issue by spreading the load across
multiple nodes in a peer-to-peer fashion. Although these solutions are interesting,
the churn usually observed in nodes of a peer-to-peer network make solution
complex for providing adequate quality of service and fault tolerance, and incur
in a large communication overhead. Our solutions are inspired in some of the
ideas proposed in these works, adapted to the target environment.

Sensor networks [1], while operating under a different context and communi-
cation assumptions, provided us with inspiration on how to gather and share data
among nodes. TinyDB [14] extends the standard SQL syntax with a continuous
query semantics, providing highly flexible queries as well as summarization and
event detection. Directed Diffusion [12] presents a data-centric solution, where
a node requests data by sending interests for named data. Data matching this
query is then gathered towards the node. In our system, the sensor definition,
virtual table and pipeline models separate querying from acquisition and data
operations, embodying characteristics of topic-based publish-subscribe systems
and SQL based queries.

In wireless sensor networks, a large number of algorithms have been proposed
for processing information [21]. However, these algorithms tend to focus on min-
imizing energy usage and nodes can only communicate with nearby nodes. Thus,

Scalable Data Processing for Community Sensing Applications 11

the topologies that are formed to aggregate results have very different constraints
when compared to our approach.

A large number of solutions have been proposed for stream and data process-
ing - e.g. [3, 13, 6, 4]. While these systems usually only focus on the processing
in the servers, our solution spans both the servers and mobile nodes, which feed
geo-referenced data into the servers periodically. Nevertheless, our work is in-
spired by some of these works. In NMap, data of a given region is processed by a
single node in a way similar to a map-reduce computation [4], where the reduce
step processes all data that has been mapped to the same key.

Quad trees have been previously used for a large number of goals, includ-
ing for addressing geographical-related problems concerning the monitoring and
tracking of moving objects [20] and for querying data in peer-to-peer networks
[19]. QTree is inspired by these works, building a query specific tree during query
dissemination.

6 Conclusions
This paper presents a system for supporting Participatory Sensing applications,
focusing on data processing. In our system, data processing spans both mobile
nodes and a set of server nodes, deployed in a cluster or cloud infrastructure.
We present three algorithms for performing data processing in the servers. RTree
is the simplest solution, leveraging random aggregation trees. QTree combines
random trees with regular, a priori, subdivision of geographic space for improved
performance. In NMap, all closely related sensory data is aggregated and pro-
cessed in a single node.

The experimental evaluation using simulation and a case-study application,
allows us to draw the following conclusions. The three distribution strategies
distribute the load across multiple nodes, with the most loaded node processing
only a fraction of the tuples of a single node solution. NMap and QTree exhibit
overall better load balancing when compared with RTree. The results also show
that NMap and QTree can compute results faster than RTree, and with a la-
tency similar to a single node solution. Thus, C4S with either NMap or QTree
presents a scalable solution for processing data in participatory sensing appli-
cations. Compared to QTree, NMap offers the additional flexibility afforded by
the use of hashing functions to distribute (and cluster) processing, as they can
be tailored to match the application scenario closely.

As for future work, we intend to continue studying solutions for improving
load balancing, processing overhead and query success and latency in all strate-
gies. Additionally, we intend to extend the support for processing information
in mobile nodes, thus further reducing the load experienced by server nodes and
helping to improve the overall scalability of the system.

References

1. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor
networks. Communications Magazine, IEEE, 40(8):102–114, November 2002.

2. A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, R. A. Peterson, H. Lu,
X. Zheng, M. Musolesi, K. Fodor, and G.-S. Ahn. The rise of people-centric sensing.
Internet Computing, IEEE, 12(4):12–21, 2008.

12 Heitor Ferreira, Sérgio Duarte, Nuno Preguiça, and David Navalho

3. M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Çetintemel, Y. Xing,
and S. B. Zdonik. Scalable distributed stream processing. In CIDR, 2003.

4. T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears.
Mapreduce online. In NSDI2010: Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation, 2010.

5. D. Cuff, M. Hansen, and J. Kang. Urban sensing: out of the woods. Commun.
ACM, 51(3):24–33, 2008.

6. J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
In Proc. 6th Symp. on Operating Systems Design & Implementation, 2004.

7. S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G.-S. Ahn, and A. T.
Campbell. The bikenet mobile sensing system for cyclist experience mapping. In
SenSys ’07: Proc. 5th Int. Conf. on Embedded networked sensor systems, 2007.

8. J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakrishnan. The
Pothole Patrol: Using a Mobile Sensor Network for Road Surface Monitoring. In
Proc. 6th Int. Conf. on Mobile systems, applications, and services, June 2008.

9. H. Ferreira, S. Duarte, and N. Preguiça. 4Sensing - Decentralized Processing for
Participatory Sensing Data. In 16th International Conference on Parallel and
Distributed Systems (ICPADS 2010). IEEE, 2010.

10. W. Grosky, A. Kansal, S. Nath, J. Liu, and F. Zhao. Senseweb: An infrastructure
for shared sensing. Multimedia, IEEE, 14(4):8–13, Oct.-Dec. 2007.

11. B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. K. Miu, E. Shih,
H. Balakrishnan, and S. Madden. CarTel: A Distributed Mobile Sensor Computing
System. In 4th ACM SenSys, November 2006.

12. C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scalable and
robust communication paradigm for sensor networks. In MobiCom ’00: Proc. 6th
Int. Conf. on Mobile computing and networking, pages 56–67, 2000.

13. M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-
parallel programs from sequential building blocks. In Proc. 2nd EuroSys European
Conference on Computer Systems, EuroSys ’07, pages 59–72, 2007.

14. S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tinydb: an acqui-
sitional query processing system for sensor networks. ACM Trans. Database Syst.,
30:122–173, March 2005.

15. Y. J. L. Marie Kim, Jun Wook Lee and J.-C. Ryou. Cosmos: A middleware for
integrated data processing over heterogeneous sensor networks. ETRI Journal,
30(5), October 2008.

16. Mohan, Prashanth and Padmanabhan, Venkata and Ramjee, Ramachandran . Ner-
icell: Rich Monitoring of Road and Traffic Conditions using Mobile Smartphones.
In Proceedings of ACM SenSys 2008, November 2008.

17. M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin, M. Hansen, E. Howard,
R. West, and P. Boda. Peir, the personal environmental impact report, as a plat-
form for participatory sensing systems research. In MobiSys ’09: Proc. of the 7th
Int. Conf. on Mobile systems, applications, and services, pages 55–68. ACM, 2009.

18. OpenStreeMap. http://www.openstreetmap.org, April 2010.
19. E. Tanin, A. Harwood, and H. Samet. Using a distributed quadtree index in peer-

to-peer networks. VLDB Journal, 16:165–178, 2007.
20. J. Tayeb, Ö. Ulusoy, and O. Wolfson. A quadtree-based dynamic attribute indexing

method. Comput. J., 41(3):185–200, 1998.
21. J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network survey. Comput.

Netw., 52(12):2292–2330, 2008.

