
Time-Aware Reactive Storage in Wireless Edge Environments
João A. Silva, Hervé Paulino, João M. Lourenço, João Leitão, and Nuno Preguiça

NOVA Laboratory for Computer Science and Informatics, Departamento de Informática
Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
jaa.silva@campus.fct.unl.pt {herve.paulino, joao.lourenco, jc.leitao, nuno.preguica}@fct.unl.pt

ABSTRACT

Nowadays, smart mobile devices generate huge amounts of data in
all sorts of gatherings. Much of that data has localized and ephem-
eral interest, but can be of great use if shared among co-located
devices. However, these devices often experience poor connectivity,
leading to availability issues if applications’ storage and logic are
fully delegated to a remote cloud infrastructure. In turn, the edge
computing paradigm pushes computations and storage beyond the
data center, closer to end-user devices where data is generated and
consumed. Thus, enabling the execution of certain components of
edge-enabled systems directly and cooperatively on edge devices.
In this paper, we address the challenge of supporting reliable and
efficient data storage and dissemination among co-located wireless
mobile devices without resorting to centralized services or network
infrastructures. We propose Thyme, a novel time-aware reactive
data storage system for wireless edge networks, that exploits syn-
ergies between the storage substrate and the publish/subscribe
paradigm. We present the design of Thyme and evaluate it through
simulation, characterizing the scenarios best suited for its use. The
evaluation shows that Thyme allows for reliable notification and
retrieval of relevant data with low overhead and latency.

CCS CONCEPTS

• Software and its engineering→ Publish-subscribe / event-based
architectures; • Human-centered computing → Mobile devices.

KEYWORDS

distributed storage, publish/subscribe, wireless networks, mobile
devices, edge computing
ACM Reference Format:

João A. Silva, Hervé Paulino, João M. Lourenço, João Leitão, and Nuno
Preguiça. 2019. Time-Aware Reactive Storage in Wireless Edge Environ-
ments. In 16th EAI International Conference on Mobile and Ubiquitous Sys-
tems: Computing, Networking and Services (MobiQuitous), November 12–
14, 2019, Houston, TX, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3360774.3360828

1 INTRODUCTION

We are witnessing a rapid growth of both the capabilities and
amount of mobile devices worldwide [8]. As such, there is a wide

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiQuitous, November 12–14, 2019, Houston, TX, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7283-1/19/11. . . $15.00
https://doi.org/10.1145/3360774.3360828

adoption of smartphones and tablets for performing the most di-
verse activities, from leisure to work-related tasks. Hence, the vol-
ume of data, like user-generated content and sensor data, generated
by these devices is growing rapidly [9].

Much of the data generated by mobile devices in all sorts of
social gatherings (like sports events, protests, music festivals) has
localized and ephemeral interest. People in such events are usu-
ally interested in similar types of information (e.g., statistics and
videos at sports events), and such interest typically diminishes over
time. Thus, swift and spontaneous data storage and dissemination
among neighboring mobile devices can be of great use. For instance,
smartphones carried by people in such gatherings can collect lots
of useful data that, when shared among co-located devices, may
help others discover new points of interest, enjoy videos of key
moments (from multiple viewpoints), or avoid waiting lines.

In many scenarios, making information available may be of para-
mount importance (e.g., disaster situations [26]), or just helpful (e.g.,
crowded events [13]). Being dependent on infrastructure access to
support such use cases is unfeasible due to their potential overload
or destruction. Even assuming the availability of infrastructure,
transferring large amounts of data to and from the cloud can lead to
network congestion, processing delays, and possible monetary costs.
Furthermore, in those scenarios, mobile devices often experience
poor connectivity, leading to availability issues if applications’ stor-
age and logic are fully delegated to a remote cloud infrastructure.
Still, the non-negligible costs associated with network infrastruc-
ture setup (i.e., adding access points) further motivates the need
to have devices interact through an infrastructure-less or ad-hoc
network. Thus, the main question we address in this paper is: how to
support reliable and efficient data storage and dissemination among
co-located wireless mobile devices without resorting to centralized
services and subsisting with no network infrastructure?

Together, the ubiquitous smart mobile devices, the opportunistic
gathering of users, and the growing pervasiveness of edge comput-
ing environments [16], have enabled novel opportunities for data
storage and dissemination at the network edge. In fact, it is more
efficient to communicate and distribute information among nearby
devices than to use distant centralized intermediaries [18]. By stor-
ing data near its source, applications can be more responsive, while
relieving some of the load from cloud and network infrastructures.

Allowing systems’ components to actively and directly collabo-
rate in the edge requires some form of distributed data repository as
to share and disseminate information. Thus, we propose Thyme, a
novel time-aware reactive data storage system for networks of mo-
bile devices, that exploits synergies between the storage substrate
and the publish/subscribe (P/S) communication paradigm. It fuses
the storage interface with a P/S abstraction, enabling co-located
mobile devices to store and disseminate data reliably among them.

https://doi.org/10.1145/3360774.3360828
https://doi.org/10.1145/3360774.3360828
https://doi.org/10.1145/3360774.3360828

MobiQuitous, November 12–14, 2019, Houston, TX, USA João A. Silva et al.

Contrary to previous solutions, queries are in the form of subscrip-
tions that have a specific time scope defining when they are active.
Leveraging this novel time-aware abstraction, Thyme is able to
achieve robust, efficient and timely data storage, dissemination, and
querying. It also allows both the notification and retrieval of rele-
vant data with low overhead and latency, using limited bandwidth,
and under message losses and node failures.

In typical storage systems [12, 24, 37], users are required to ac-
tively and explicitly search for the desired data. Since the kind of
distributed environments we target are highly volatile and dynamic,
we adopt a reactive and loosely coupled data dissemination mecha-
nism [15]. By integrating a P/S abstraction, users (or applications)
can register their interests, being subsequently notified of any data
items matching those interests. This allows users to quickly dis-
cover what data exists in the system in a reactive manner, and only
be notified about data they are interested in.

In the kind of gatherings we are addressing, individual moments
are intrinsically tied by time relations (e.g., the band performing
at time x in the music festival, or the second speech in a rally).
Also, people are often interested in information with these associ-
ated time references (e.g., find photos of the opening band). Hence,
Thyme considers time to be a first order dimension. Subscriptions
include a time frame that defines their active time-span, either in
the future, in the present, or in the past, effectively providing the
full time decoupling of the P/S paradigm [15].

We present two different approaches to Thyme. The first one,
Thyme-LS, follows a simple, yet effective, unstructured approach
using local storage and query flooding. The second more intricate
one, Thyme-DCS, is inspired by the fact that geographical positions
have a close relation to topology in wireless networks, and follows
a data-centric storage (DCS) approach [33], whereby we build a
storage substrate over a geographic hash table (GHT) [5].

Although previous systems presented in the literature offer some
features similar to Thyme (e.g., tuple spaces [25, 31], or peer-to-peer
(P2P) systems [12, 37]), none provides the same characteristics (as
we detail in §2). Thus, to the best of our knowledge, Thyme is the
first system to provide reliable reactive storage for wireless edge
networks that may be effectively and efficiently used in either small,
medium, and large scale scenarios.

In summary, the main contributions of this paper are the fol-
lowing: i) a reactive storage system with intrinsic time-awareness,
that fuses a P/S abstraction with the storage substrate, and allows
queries within a specific time scope (§3); ii) the design of Thyme,
a novel time-aware reactive storage system (§4), and our two ap-
proaches to this proposal—the unreliable Thyme-LS (§5), and the
reliable Thyme-DCS (§6); and iii) the characterization of the sce-
narios best suited for the use of the proposed solutions and their
reliability trade-offs, through simulation (§7).

2 RELATEDWORK

Typical P/S systems are stateless, i.e., producers and consumers only
receive data if online at the same time. Hence, the notion of publi-
cation persistence has not been addressed in most systems. Some
approaches for wired settings exploit the concept of a persistent
data repository, by means of distributed buffers [7] or traditional
databases [39]. However, such solutions do not consider time as

a first class dimension of the P/S abstraction. Furthermore, solu-
tions for wired scenarios cannot be easily adapted for wireless
setting where connectivity is not stable. In the particular context
of wireless settings, Chapar [20] is, as far as we know, the only
persistent P/S system. However, it only assigns time to publica-
tions, which are buffered only until their lifetime expires. In Thyme,
subscriptions have their time scope assigned, while publications
are permanently stored. Thus, new subscribers can always request
previously published data. Moreover, Chapar is not functionally
symmetric, achieving poor load balancing, an aspect that has been
explicitly considered in the design of Thyme.

Krowd [12] and Ephesus [35] enable content sharing and stor-
age among nearby mobile devices. Both are sustained by classical
distributed hash tables and need some kind of network infrastruc-
ture for inter-device communication. Of the two, Ephesus is the
only to address device mobility or failure, and data availability,
via replication. In turn, Thyme supports several wireless technolo-
gies, and targets multi-hop environments using a GHT, known for
being more suitable in wireless networks. It also employs several
replication mechanisms to address mobility and data availability.

PAN [24] and Phoenix [29] are two systems for reliable storage in
mobile ad-hoc networks (MANETs). PAN is an asymmetric system
based on probabilistic quorums, and Phoenix uses a round-based
simple quorum protocol for one-hop networks only. iTrust [23]
and PDS [37] focus on data discovery and retrieval on co-located
devices. iTrust is based on random walk techniques, while PDS
is inspired in information-centric networking. PDS’s aggressive
caching policy can lead to serious storage overheads, and since data
is only cached if requested, less popular data may disappear. iTrust
does not address data availability issues.

All these storage systems employ the request/reply model, where
peers have to proactively search for content. In turn, Thyme ex-
plores synergies between the P/S paradigm and the storage sub-
strate to provide both persistent publications and a reactive inter-
action model, thus allowing applications to react to new data being
generated and stored.

Other approaches based on opportunistic and delay-tolerant
networking [10, 28, 38] provide communication in the presence
of intermittent connectivity. Content dissemination is best effort,
i.e., it depends on the willingness of interested nodes to carry such
content. These systems also provide a reactive interaction model for
data retrieval. They are, however, devised for extreme environments
that relax temporal restrictions to the order of hours or days.

Systems like TuCSoN [27], LIME [31], and TOTA [25] adapted the
tuple spaces model [17] for mobile and wireless environments. Be-
sides the model’s proactive operations, these systems allow actions
to be performed as reactions to certain events. Although reactions
are similar to Thyme subscriptions, there are significant differences.
First, reactions always execute on the client side, i.e., on the host
that installed it, and always receive the tuple that triggered the
reaction. This does not allow load balancing when executing the re-
actions and when matching reactions with tuples. It also generates
more traffic than actually required, because it is not possible to filter
data at the source. In Thyme, subscription matching is executed by
random peers that may change in each matching, thus improving
load balancing. Another major difference is that tuple spaces do
not separate data and metadata management. That is, both have

Time-Aware Reactive Storage in Wireless Edge Environments MobiQuitous, November 12–14, 2019, Houston, TX, USA

to be represented as tuples. Since tuples are immutable, the only
way of modifying metadata is to remove and insert a new (changed)
tuple, which may trigger unwanted reactions. This can be bypassed
by making an intricate decomposition of the metadata into several
tuples. Although this may work in small scale scenarios, it can
quickly become cumbersome, and penalize performance in large
scale scenarios, as targeted by Thyme.

TuCSoN was designed for mobility in Internet environments
and presents the notion of programmable tuple spaces. It is not
easily adaptable to dynamic wireless environments (e.g., it assumes
reliable communication), and its reactions do not allow the same
kind of behavior as Thyme’s subscriptions.

In LIME, when peers are within range, the contents of the tuples
spaces of each peer are transiently shared, forming a federated
tuple space. The contents of these virtual tuple spaces evolve in
time according to the current connectivity pattern. Although reac-
tions enable tuple spaces to react to the insertion of relevant tuples,
they are sensitive to hosts’ connectivity, which is not sufficient to
generally support distributed services or applications. Therefore,
LIME was devised for small scale scenarios. In turn, Thyme lever-
ages a lightweight flooding approach or a GHT for ensuring the
best possible connectivity in large scale scenarios, and its routing
schemes jointly with its replication mechanisms allow the matching
of publications against subscriptions of all peers in the network.

In TOTA, tuples can autonomously propagate in the network.
Subscriptions only react to changes in a node’s local tuple space.
To achieve something similar to Thyme, data should be propagated
to every network node in order for subscriptions to be matched
against the data. Otherwise, some nodes would not be notified
about relevant data. TOTA also requires every node to execute
the matching of subscriptions against tuples, thus suffering from
redundant work and poor load balancing. In contrast, Thyme does
not require data to be replicated throughout the network and allows
for better load balancing.

Regarding app stores, there are several applications for sharing
data between mobile devices, e.g., SuperBeam [22] and Xender [4]
allow synchronous one-to-many data exchange. However, data is
only available while its owner is online.

3 TIME-AWARE REACTIVE STORAGE

Typical storage systems provide a request/reply proactive interac-
tion model, while in most publish/subscribe (P/S) systems, publi-
cations are transient. To overcome such shortcomings, we build
strong synergies between the storage substrate and the P/S par-
adigm. On the one hand, the storage substrate leverages the P/S
abstraction to provide a reactive interaction model whereby users
register their interests through subscriptions and are notified as
relevant data is generated. On the other hand, the P/S abstraction
takes advantage of the storage substrate to provide persistent pub-
lications, enabling the time-awareness concept and providing the
full time decoupling [15].

Our storage interface provides the usual operations: insert, re-
trieve, and delete. Additionally, due to its integration with the P/S
abstraction, it also offers the regular P/S operations: publish, sub-
scribe, and unsubscribe. All operations are asynchronous, receiving
their results through callbacks.

3.1 Inserting & Publishing Data

In our model, the insert and publish operations aremerged together.
As a result, the insertion of a data object into storage may trigger
the sending of notifications to subscribers.

A data object is the basic unit of work and is seen as an opaque
set of bytes. Every object has some associatedmetadata that consists
of the following: the object identifier; a set of tags related with the
object, e.g., hashtags used in social networks; a summary of the
object, e.g., a thumbnail of an image; the object insertion timestamp;
and the owner’s node identifier.

Tags are used as topics for subscriptions, thus enabling a topic-
based P/S system. Although topic-based addressing is not as ex-
pressive as content-based systems [1], it requires far less filtering
and computations, which fits our target environments populated
by battery-constrained mobile devices. Still, this tagging feature
provides a flexible annotation scheme, e.g., by adding the owner’s
node identifier to the tags of its own objects, an application can
enable the retrieval of all the objects stored by a certain node/user.

3.2 Deleting Data

The delete operation removes an object from storage, making it
inaccessible to future subscriptions. Note that subscriptions target-
ing the past will not see deleted objects, even if these were initially
available in the subscription’s time frame.

3.3 Subscribing

A subscription consists of the following: its identifier; the query
defining which tags are relevant; the timestamps defining when
the subscription’s time frame starts and expires (tss and tse, respec-
tively); and the subscriber’s node identifier.

Unlike typical topic-based P/S systems, that only allow one topic
per subscription, we support arbitrary propositional logic formulas
where literals are tags associated with objects.

The tss and tse timestamps specify the subscription’s time frame,
where the special value ⊥ represents, respectively, the times at
which the system started and stopped to exist. With a subscription
issued at time t : tss = ⊥ ∧ tse = t matches events that happened
before the subscription (this allows a typical search or find operation
on the storage substrate); tss = t ∧ tse = ⊥ matches events after
or concurrent with the subscription; and tss = tse = ⊥ matches all
the past and future events in the system. These parameters can also
take any concrete timestamp value.

Due to the unreliable nature of our target (wireless) environment,
subscribers are notified of all relevant data in a best effort manner.
Notifications are triggered upon an insertion, by detecting that
the object being stored matches existing subscriptions; and upon
a subscription that spans into the past, by detecting that this new
subscription matches previously stored objects. Notifications are
sent to the respective subscribers carrying only the metadata of the
matching objects.

The unsubscribe operation revokes a subscription before it natu-
rally expires after its end timestamp, tse.

When subscribing for a popular tag, that spans into the past, the
subscriber might get flooded by a large amount of (past) notifica-
tions. To attenuate this problem, when subscribing for a time frame
in the past, a subscriber is only notified about the n most recent

MobiQuitous, November 12–14, 2019, Houston, TX, USA João A. Silva et al.

objects from a total of x matching objects. Then, if interested, a
subscriber can request more of those objects, receiving the notifica-
tions in expressly requested batches. All the subsequent matching
objects will be notified as usual.

3.4 Retrieving Data

Users are notified only about data they are interested in, allow-
ing them to discover what data exists in a reactive manner. Even
so, a typical search operation can be done by subscribing with
timestamps tss = ⊥ and tse = NOW .

Due to our reactive model, objects can only be retrieved as a
response to notifications (using the received object metadata), thus
revealing a relation between the subscribe and retrieve operations.
Received notifications must be acted upon, and may either be dis-
carded, trigger an immediate retrieve operation, or be stored by the
application and acted upon later.

4 THE MANY LEAVES OF THYME

The design of a time-aware reactive storage system for wireless
edge networks presents a set of interesting challenges. For example,
where to place data and how to find it? What are the proper trade-
offs between communication and reliability? How and what data
to disseminate? And overall, how to integrate the two interfaces—
storage and P/S—without losing their principal characteristics, and
making the resulting interface easy for developers to grasp and use?
Thyme’s design, presented next, considers these and other issues.

4.1 System Model

We consider a classical asynchronous model comprised of mobile
devices (hereafter named nodes) with no mobility restrictions, other
than those imposed by the venue they are in. Our algorithms do
not assume any radio technology or routing infrastructure, being
practical in several wireless networks. Nodes communicate by ex-
changing messages through a wireless medium (e.g., Bluetooth,
Wi-Fi ad-hoc, Wi-Fi Aware), and should be able to establish com-
munication with (all) their one-hop neighbors. We also consider
the classical crash-stop failure model: nodes can fail by crashing
but do not behave maliciously.

Data objects are considered immutable. Also, we do not consider
security or access control concerns, thus only publicly shareable
data is manipulated (e.g., as in social networks). Thyme notifies
subscribers of relevant data as completely as possible, i.e., miss-
ing some notifications is permitted because applications are not
expected to be mission-critical.

Each node has a globally unique identifier and can determine
its geographical position, through GPS or other means [32]. Thus,
nodes can be aware if they are moving or not.We also assume nodes’
clocks to be synchronized (with a negligible skew). Both these
assumptions are reasonable since we target mobile devices (e.g.,
smartphones) and nowadays even low-end devices come equipped
with GPS and synchronize their clocks with the network providers,
while other solutions allow device location even indoors [32].

4.2 Architecture

In Thyme, akin to (flat) peer-to-peer (P2P) systems, nodes are func-
tionally symmetric and share the same responsibilities, i.e., there

Application

DCSLS

GHTFloodingRouting

Storage

THYME
THYME-LS THYME-DCS

Figure 1: System overview.

are no specialized components (like P2P super-peers or P/S brokers),
and each node can be a publisher, a subscriber, or both.

Thyme’s design comprises three main layers, depicted in Fig. 1.
The bottom layer handles message routing. The middle layer is
the storage substrate. The top layer is Thyme itself, providing its
interface for applications.

As illustrated in Fig. 1, we propose two different approaches for
the two bottom layers (routing and storage). Thyme-LS (§5) uses the
nodes’ local storage, and query flooding, thus data objects are stored
locally by their owners, while subscriptions are fully replicated. Its
routing layer provides flooding to the entire network (using UDP
broadcast), and (multi-hop) unicast using a typical ad-hoc routing
protocol (e.g., DSDV [30]).

In turn, Thyme-DCS (§6) follows a data-centric storage (DCS)
approach [33], using a simple key-value substrate that we built over
a cell-based geographic hash table (GHT) for wireless networks [5].
Physical space is divided into equally-sized square-shaped cells (see
Fig. 2), and all physical nodes within a cell collaboratively act as a
virtual node. Messages are addressed to geographic locations, thus
routed to the cell that contains the message destination. Messages
addressed to a cell are delivered to all physical nodes within the
cell. The use of the GHT is two-fold: 1) cells are used to store all
the system data; and 2) cells are exploited to match subscriptions
and objects, i.e., cells act as virtual P/S brokers.

Wireless communication mediums are known to be subject to
many forms of interference, hence messages may be lost and not
reach their final destination. However, this layer does not provide
any mechanisms to recover from lost messages, delegating this
responsibility to the upper layers.

5 THYME-LS

Thyme-LS employs a lightweight unstructured approach. Insert
and delete operations are entirely executed locally. Thus, objects
are only stored by their owners. On the other hand, subscribe and
unsubscribe operations are flooded and executed in every node,
hence subscriptions are fully replicated.

Notifications may be triggered in two occasions: upon an insert
operation, the node checks if that new object matches any of its
locally stored subscriptions; and upon issuing a subscription (when
flooding the respective message), each node that receives it checks
if that new subscription matches any of its locally stored objects.

Retrieve operations request the desired objects directly from
their owners, using the information in the notifications, and the
multi-hop unicast provided by the routing layer.

Node mobility is handled transparently by the protocol used in
the routing layer. Also, since objects are only stored locally by their
owners, Thyme-LS does not guarantee objects’ persistence once
their owners fail or leave the system.

Time-Aware Reactive Storage in Wireless Edge Environments MobiQuitous, November 12–14, 2019, Houston, TX, USA

hash(“beach”)

hash(“summer”)

insert(, “beach.jpg”,

<“beach”, “summer”>)
13

5

2
hash(“beach”)

subscribe((“sun” && “sand”) | “beach”,

tsstart, tsend)

hash(“sun”)

Figure 2: Insert and subscribe operations in Thyme-DCS.

The tags’ hashing determines the cells responsible for the

metadata (cells 2 and 5) and the subscription (cells 2 and 13).

When joining the system, nodes broadcast a join request. To
avoid a flooding of replies, only a few (randomly selected) neigh-
bors respond back with their locally stored subscriptions. To avoid
collisions, replies are delayed a (configurable) random amount of
time. If no replies are received after a maximum number of retries,
the joining node assumes it is alone, and starts operating normally.

6 THYME-DCS

By using geographical information, Thyme-DCS provides topology-
awareness by design, and allows the inference of the location of
relevant data to subscriptions, enabling access to such data using a
location-aware strategy.

6.1 Inserting Data

This operation leverages on the cells conveyed by the underlying
geographic hash table (GHT). Object data and metadata are man-
aged differently. The later is indexed (and, thus, replicated) in all the
cells resultant from hashing the object tags. The actual object data
is replicated by all the nodes of the owner’s cell (§6.2). This ensures
only a small amount of data (i.e., the metadata) is sent through the
network, whereas the bulk of the data is kept near its source.

Fig. 2 illustrates an insert operation. The cells resultant from
hashing each tag are responsible for managing the object’s meta-
data and checking if subscriptions match the inserted object. If a
subscription has matching tags with an object, it will also have over-
lapping (responsible) cells, guaranteeing the matching and sending
of notifications to the subscribers.

6.2 Replication

Since we target dynamic and volatile environments, in order to
provide data availability and tolerance to churn, this approach
employs two replication mechanisms.

Active replication takes advantage of the virtual nodes provided
by the cell-based GHT. Upon an insertion, an object is disseminated
inside the owner’s cell. Onward, every node inside the cell should be
able to reply to retrieve operations for that object. This guarantees
that stored content will remain in the system even if their owners’
leave. Note that object metadata is also (actively) replicated in the
cells resultant from hashing the object’s tags (§6.1).

In turn, passive replication leverages on the nodes that already
retrieved an object to providemore replicas scattered in the network,
increasing data availability, and offering a list of multiple locations
from where it may be retrieved.

To enable bothmechanisms, the system needs to keep track of the
whereabouts of each object replica. This is done by listing an object’s
replica locations in its metadata, in what we call replication lists (a

list of pairs ⟨idnode , cellnode ⟩). These lists are bound to a maximum
size, maintaining only the most recent entries. Also, the list only
contains one entry for an object’s active replica, representing all
the nodes inside that cell. Since nodes can move, their location may
change over time. After a node stabilizes in a (new) cell, it must
update its location for the passive replicas of the objects it holds.

6.3 Deleting Data

In the delete operation, the object metadata indexed by the object
tags is removed from the responsible cells. However, while active
replicas are also explicitly removed, the same does not happen to
passive ones.

6.4 Subscribing

Since the GHT used by Thyme-DCS only routes messages to geo-
graphical positions, there is the need to knowwhere to send notifica-
tions, i.e., the node’s address is not enough. Thus, subscriptions are
extended with the location (i.e., cell address) of the subscriber node.
This information needs to be updated every time the subscriber
node moves to another cell.

Leveraging on the fact that every propositional logic formula has
an equivalent in disjunctive normal form (DNF), we employ a divide
and conquer strategy of breaking the disjunction into its individual
conjunctive clauses, and evaluate each one separately. For a match
to occur, it suffices that one evaluates to true. The use of DNF en-
ables load balancing when matching objects against subscriptions,
since the work can be split among different cells/nodes. For each
conjunction, we randomly select as its key one of its positive literals.
Hashing that literal determines the cell where to send that part of
the query. That cell becomes a (virtual) broker for the subscription,
and is responsible for checking if objects match the subscription,
and notifying the subscribers. Fig. 2 depicts a subscription of a
query with two conjunctions.

Regarding notifications, upon an insertion, cells indexing the
metadata check if the new object matches any existing subscrip-
tions; and upon a subscription, cells indexing it check if the locally
stored metadata match that new subscription.

When a subscriber moves to a different cell (i.e., each time a node
crosses the boundary of a cell), it must update its location for every
active subscription it owns. During this situation, notifications sent
to moving subscribers may never reach their destination. In such
cases, the routing layer returns negative acknowledgments (NACKs)
for messages addressed to individual nodes that could not be de-
livered (§6.6). NACKs are used to convey that a node is no longer
in its supposed cell, which may be caused by movement or node
failure. Node movement will be detected through the subscriber’s
location update. In such case, we can re-send the notifications that
were not previously delivered. Otherwise, we can assume the node
has failed and simply stop sending notifications.

When executing an unsubscribe operation, messages are sent to
the cells determined by hashing each conjunction key.

6.5 Retrieving Data

From all the locations in the replication list (§6.2) received in the
object metadata (with the notification), the requesting node chooses
the geographically closest one to itself, and sends a retrieve request

MobiQuitous, November 12–14, 2019, Houston, TX, USA João A. Silva et al.

for the desired object. If a negative reply is received, the requester
proceeds and tries the next location in the list (until no more options
are available, or a maximum of retries is reached). As a last attempt,
the cell actively replicating the desired object will be used (if not
already tried), because it offers higher chances of success.

The use of geographical routingmakes it easier for nodes tomake
hints on which replicas are better (i.e., closer), using the geographic
distance as metric. This approach reduces the distance data has to
travel in the network, allowing for a location-aware strategy when
retrieving objects.

6.6 Storage Substrate & Routing Layer

The major drawbacks of a routing protocol based on a distributed
hash table (DHT) for wireless networks are the mismatch between
the logical and physical topologies, and the high maintenance over-
heads [40]. Inspired from both wired [21] and wireless [5] settings,
we adopt a cell-based GHT as our routing protocol. By using ge-
ographic information, there is no mismatch between the logical
and physical topologies. Also, by leveraging on the control traffic
of the geographic routing, the GHT does not add any other costs.
Furthermore, the cell-based approach relaxes the requirements for
location accuracy, and is robust to topology changes.

We implement a data-centric storage (DCS) substrate on top of
this GHT, providing a simple key-value storage abstraction. To
make this layer more suitable for the highly dynamic environments
we target, we introduce several mechanisms and optimizations.

Our routing scheme is similar to the ones used in [5, 33]. Routing
is done at cell-level, using a variation of the greedy perimeter state-
less routing (GPSR) protocol [19]. GPSR makes greedy decisions,
forwarding messages to the next neighbor geographically closer to
the message destination. When such is not possible, the algorithm
resorts to forwarding messages around voids in the network. This
layer provides a routing mechanism between cells, routing to an
individual node (in a specific cell), and broadcast within a single cell.
In our implementation, the one-hop broadcast is used as a neighbor
discovery service—transmitting periodic beacons with the node’s
current cell—, and as the intra-cell communication primitive. Since
broadcast is not acknowledged at MAC-level, this makes it a best
effort communication primitive.

Regarding dynamic cell structure, we address empty cells forcing
keys to take an entire loop around those cells [5, 33], stopping in
the cell closest to the supposed destination (which becomes a proxy
of the destination cell). A cell becoming empty has to deliver all its
keys to its proxy cell. In turn, a cell becoming populated receives
its keys from its proxy cell, and also all the keys of the empty cells
for which it now becomes a proxy.

We argue that moving nodes render routing information volatile,
thus only stationary ones actively participate in message routing.
Since our target scenarios have mild mobility patterns (i.e., nodes
do not move constantly, and some might not even move during the
entire event), only stationary nodes form the GHT. When a node
starts to move and leaves its current cell, it stops participating in
the routing protocol (i.e., it stops forwarding messages). It resumes
the protocol when it detects itself as being stationary, by joining
the local cell. While moving, nodes still process received periodic
beacons, allowing them to keep communicating with the GHT.

Nodes are not individually addressable, but we support the send-
ing of messages to a node in a specific cell. To allow the upper layers
to react to a node failure or migration from one cell to another,
the routing layer replies with a NACK to a message source, when a
message addressed to an individual node could not be delivered.

Formessages that are to be delivered tomultiple destinations (e.g.,
notifications), we optimized our routing scheme by only propagat-
ing a single message to those destinations, in what we call mes-
sage destination aggregation. This message is only duplicated when
strictly required, which happens when the message’s next hop for
different destinations is not the same. This contributes to reduce
energy consumption and the occupancy of the wireless medium.

When joining the system, a node waits a configurable amount
of time. If, during that time, it receives a beacon sent by a neighbor
in its own cell, the sender of that beacon is used as an entry point.
A join request is then exchanged, and the joining node receives all
the cell state. If a maximum number of retries is reached, the node
assumes it is alone in the cell, and starts operating normally.

7 EVALUATION

Our evaluation seeks to answer the following questions: 1) which
are the trade-offs provided by each approach of Thyme? 2) how
does each approach handles with churn? and 3) how does each
approach reacts to node mobility?

Each data point reports the average of five randomly generated
network topologies, each independently run three times, making a
total of 15 runs per data point. As baseline, we devise an approach
based on external, centralized storage—Thyme-ES. Storage is ex-
ternal in the sense that it does not belong to the nodes forming
the network, i.e., it belongs to a different (server) component. Ob-
jects and subscriptions are stored in external storage, and every
operation is sent to that server to be executed (and replied back).

7.1 Implementation

In a previous workshop paper [6], we presented a proof-of-concept
prototype of Thyme. We applied the Thyme-DCS approach to net-
works of Android devices, and used it to develop a photo sharing
application. User can share photos, subscribe to tags of their interest,
and subsequently be notified and obtain photos stored with such
tags. The experimental results showed adequate response times for
interactive usage, and low battery consumption. This prototype
substantiates the feasibility of Thyme (in a small network of mobile
devices), and helps corroborate the simulation results shown next.

To experiment with large scale scenarios, we resort to simulation
and implement the Thyme approaches in the ns-3 network simu-
lator [34]. We use ns-3.27 and nodes communicate through 802.11
Wi-Fi ad-hoc (using UDP). Both Thyme-ES and Thyme-LS use
DSDV [30] as their routing protocol.

In Thyme-DCS, when a cell becomes empty/populated, a state
transfer needs to happen between cells (§6.6). Currently, we do not
implement such mechanism thus, in our experiments, cell structure
is static, i.e., empty/populated cells will remain as such throughout
the experiments. This poses some limitations regarding node mo-
bility and churn in Thyme-DCS: nodes may move freely inside a
cell, but may only leave a cell if it remains populated afterwards;
and nodes may only migrate to previously populated cells.

Time-Aware Reactive Storage in Wireless Edge Environments MobiQuitous, November 12–14, 2019, Houston, TX, USA

To recover from lost messages, all approaches employ a retrans-
mission mechanism. After a configurable amount of time without
receiving the expected replies, the operation is retried. If a (config-
urable) maximum number of retries is reached, the operation fails
with a timeout error code.

7.2 Simulator Setup and Methodology

Unless stated otherwise, all parameters were left with the simu-
lator’s default values. We used Wi-Fi 802.11g configured with a
constant rate manager and a data rate of 6 Mbps.

We emulate an application similar to an online social network
on top of Thyme (akin to Twitter). We generated trace files with the
operations to be executed, using crawled tweets that were issued
during the 2016 UEFA European Championship final. Tweets were
used as data objects, where: the tweet id was used as the object
identifier; the text was used as the object data; the timestamp was
used as the object insertion time; and the hashtags were used as
the object tags. The top-k most active users were chosen, and every
other operation was generated from that, using exponential distri-
butions configured with different λ values (i.e., rates). Subscriptions
were generated taking into account the tags of the inserted objects,
and the top 60% most popular tags were used for the subscriptions’
queries (for simplicity, each subscription subscribed to one tag cho-
sen at random). Subscriptions were generated in two forms: time
independent (tss = tse = ⊥); and in the future (tss = NOW and
tse = ⊥). Time independent subscriptions where generated with
a probability of 60%. During the first half of the game, subscrip-
tions were generated with a rate of three per user per hour, and
reduced to one for the remainder of the event. Delete and unsub-
scribe operations, which are expected to be rare, were generated
with a rate of 0.5 and 0.2 per user per hour, respectively, during the
second half of the game. We crawled a total of three hours, starting
at 20:00 2016-07-10. To make the simulation execution more lively,
we compressed the three hours into ten minutes of simulated time.

The simulation area has a rectangular shape. For Thyme-DCS,
cell size is 40x40m, which entails a radio range of ±113m (roughly
the range in our Wi-Fi setting), and we set an average density of 2
nodes per cell. All nodes were placed uniformly at random.

In our simulations, the application running on the nodes started
only after 30s. Nodes joined randomly in the next 30s, and op-
erations started being issued only after that. At the end of the
simulation, nodes shutdown 60s after operations stopped being
issued, for a total simulation time of 720s. All Thyme approaches
executed the same traces and used the same methodology.

Since notifications are not user-triggered operations, we use
recall (i.e., how many relevant items are selected) as a measure of
success. However, we use the number of matching objects for a
perfect execution of the trace, where operations always succeed
and are executed instantly. Take into account that, for instance, if
an insertion fails, all the subscriptions matching that object will
not be matched against it, thus achieving 100% recall is practically
impossible for our comparison baseline.

7.3 Static and Stable Nodes

In Fig. 3, we can observe the impact of each Thyme approach on
the lower layers of the network stack. Figure 3a reports the total

16 50 100 150 200
0

200

400

Nodes

Tr
affi

c
(M

B)

(a) Total transmitted traffic.

16 50 100 150 200
0

5

10

Nodes

Pa
ck
et
s
×
10

3

(b) Total failed transmissions.

16 50 100 150 200
0
20
40
60
80

Nodes

Tr
affi

c
(M

B)

(c) Total forwarded traffic.

16 50 100 150 200

100

102

Nodes

Tr
affi

c
(M

B)

(d) Routing control information.

ES LS DCS

Figure 3: Lower layers metrics (static scenario).

traffic transmitted by all nodes (at the physical layer—PHY), during
the simulation. ES and LS overlap, and both exhibit a reasonable
overhead. With 196 nodes, they report more than 2× the traffic of
DCS. Looking at these values in an energy perspective, ES and LS
will spend twice the energy to do roughly the same work as DCS.

Fig. 3b depicts values reported by the link layer, and it shows the
total number of packets that exceeded the maximum retransmission
attempts. The standard IEEE 802.11 Wi-Fi MAC layer implements
CSMA/CA and a per hop retransmission mechanism. Thus, this
figure depicts the interference observed in each approach. Both ES
and LS require many more retransmissions than DCS to overcome
the loss of messages that is inevitable in a wireless communication
medium. This is due to the proactive nature of DSDV, frequently
sending update messages, and thus causing more interference.

Next, Fig. 3c depicts the total traffic forwarded by every node
in the system. In some sense, this value reports the amount of
work nodes have to do on behalf of the system. In this case, DCS
forwards more traffic because its messages are forwarded through
longer routes than ES and LS (that use DSDV). This is even more
exacerbated by the fact that some DCS messages may need to loop
around voids in the network (§6.6).

Fig. 3d shows the total amount of control information the routing
protocols transmit. While DSDV needs to exchange bulky routing
tables to compute the shortest paths to every other node in the
network, the geographic routing used by DCS routes messages
using only local information (§6.6). With 196 nodes, a quarter of all
the transmitted traffic of ES and LS was control traffic.

Regarding the operations success ratio, we verify that DCS is
above 99%, except for notifications that fluctuate a little bit and have
a success ratio as low as 95%. LS also reports high success ratio:
(un)subscribe operations have above 99% success. Only retrieve
operations and notifications have a very small reduction as the
system grows, having 96% and 95% success, respectively, with 196
nodes. For ES, we see a slight decrease in the success ratio as the
system grows, having as low as 78% success with 196 nodes. In
every approach, notifications are a type of message that does not

MobiQuitous, November 12–14, 2019, Houston, TX, USA João A. Silva et al.

16 50 100 150 200
100
101
102
103

Nodes

La
te
nc
y
(m

s)

(a) ES.

16 50 100 150 200

100
101
102
103

Nodes

La
te
nc
y
(m

s)

(b) LS.

16 50 100 150 200
100

101

102

103

Nodes

La
te
nc
y
(m

s)

Ins. Del.

Retr. Sub.

Unsub. Not.

(c) DCS.

Figure 4: Operations Latency (static scenario).

employ an application-level retransmission mechanism, thus they
are more susceptible to interferences.

Regarding operations latency (Fig. 4), we can see that for a small
number of nodes all approaches behave similarly, with ES having
slightly higher latencies. As the number of nodes increases, accom-
panied by increased interferences (Fig. 3b), we verify that latencies
also increase. This is caused by the need for more retransmissions.
However, notifications have lower latency in LS, because the geo-
graphic routing of DCS cannot compete with the shortest paths of
DSDV. On the other hand, retrieve operations in DCS have a slightly
lower latency, because DCS causes overall less interferences and
it employs a location-aware strategy when retrieving data (§6.5).
In ES, the decrease in success ratio is accompanied by an increase
in operation latency. This comes from the fact that the majority of
operation failures happen due to timeout. Overall, timeouts may
indicate a congested network, where operations consistently have
to be retried several times. Note that ns-3 metrics do not account for
processing time (i.e., the time spent executing the protocols logic).
If that was not the case, it would exacerbate ES latencies even more,
since it has a central coordination point that with enough incoming
requests becomes the system’s principal bottleneck.

In summary, Fig. 3 shows that in DCS nodes transmit much
less traffic that in both LS and ES (which are similar). This comes
at the cost of latency, when compared to LS, as shown in Fig. 4.
The centralized approach has the worst behavior as the size of the
system increases, with a decreasing success rate and latency much
higher that both DCS and LS.

7.4 Static but Failing Nodes

Regarding churn, i.e., the ingress and egress of nodes in the sys-
tem, we experiment with two different scenarios. We show the
impact of nodes leaving the system definitely, e.g., nodes crashing.
Secondly, we show the impact of nodes with intermittent failures,
thus entering and leaving the system multiple times throughout
the simulation. These scenarios allow to evaluate aspects regarding
data availability and persistence in the presence of failures.

5 10 20 30 40 50
80
85
90
95
100

Failing nodes (%)

Su
cc
es
s(
%) ES

LS

DCS

Figure 5: Notification success ratio (crashing, 100 nodes).

5 20 40 50
60
70
80
90
100

Failing nodes (%)

Su
cc
es
s(
%)

(a) Success ratio.

5 20 40 50
0

200

400

Failing nodes (%)

La
te
nc
y
(m

s)

(b) Latency.

Retr. Not.

Figure 6: Application metrics for LS (transient, 100 nodes).

7.4.1 Permanent Failures. In this scenario, nodes are either pub-
lishers or subscribers, and the former choose a random instant (be-
tween 200 and 300s of the simulation) to leave the system abruptly.

In LS, insertions are executed locally, thus not requiring com-
munication. However, because only the object owner stores that
data, if that node fails, all the data it stores will disappear. Fig. 5
shows exactly that. As more nodes fail, in LS, nodes with relevant
data leave the system, thus the matching between subscriptions
and objects is not detected. Since DCS employs replication (§6.2),
even when object owners leave the system, matching still occurs.
ES is not affected because all the system data is stored in external
storage. As long as that server component does not fail, data will
always be available.

7.4.2 Transient Failures. In this scenario, randomly selected nodes
alternate between the on and off states, during 120s and 60s respec-
tively. Nodes have a 75% probability of changing to the opposite
state, otherwise they stay in the same state for an equal period of
time.

With nodes entering and leaving the system frequently, retrieve
and notification operations are the ones that can be more affected,
specially in the LS approach. Fig. 6 presents some application met-
rics of the LS approach for these operations. Since DCS employs
replicationmechanisms, it is little affected by the intermittent churn,
with operation success ratio well above 90%, and latencies consis-
tently between 150-300ms. Due to its central server component,
ES is also little affected by the intermittent churn, with operation
success ratio above 80%, and slightly higher latencies than DCS,
between 400-600ms. LS, however, suffers from low success rate in
the retrieve operation (Fig. 6a). Although notifications are detected,
when a node tries to retrieve some object, as the amount of failing
nodes increases, the probability of the data owner being off also
increases. This is also accompanied by an increase in the latency of
notifications (Fig. 6b). In LS, the matching between a node’s stored
objects and subscriptions that were issued when the node was off

Time-Aware Reactive Storage in Wireless Edge Environments MobiQuitous, November 12–14, 2019, Houston, TX, USA

5 20 40 50
0

50

100

150

Failing nodes (%)

La
te
nc
y
(s
)

(a) Max. notification latency.

0 20 40 50
0

100

200

Failing nodes (%)

Tr
affi

c
(M

B)

(b) Total forwarded traffic.

ES LS DCS

Figure 7: Transient scenario, 100 nodes.

0 0.6 1.4 2.5
80
85
90
95
100

Max. speed (m/s)

Su
cc
es
s(
%)

(a) Notifications success ratio.

0 0.6 1.4 2.5
100

200

300

400

Max. speed (m/s)

La
te
nc
y
(m

s)

(b) Download latency.

ES LS DCS

Figure 8: Mobile scenario, 100 nodes, pause 120 seconds.

have to wait for the node to switch state and join the system (§5).
When joining the system, a node receives the subscriptions issued
by all the other nodes previous to its entrance. Then, the joining
node finds the new subscriptions it received and checks if it has
matching objects. Fig. 7a corroborates this. The maximum latency
for DCS and ES notifications stays stable as the amount of failing
nodes increases. But, in LS, the maximum latency for a notification
increases to values around 100s with 40% of failing nodes.

Fig. 7b shows a byproduct of the retrieve operation low success
ratio. With no churn, DCS forwards more traffic because its insert
and delete operations require communication. However, with this
kind of intermittent churn, LS forwards muchmore traffic than DCS.
This is due to the fact that retrieve operations are retried (and fail)
several times. Also, this entering and leaving of nodes in the net-
work, causes routing tables to become outdated, requiring changes
to be made more frequently.

7.5 Mobile but Stable Nodes

We argue that the plain random waypoint mobility model does not
mimic the movement pattern people have in the kind of events
we target. For instance, in a music concert, people do not move
constantly. To make it better resemble our target scenarios, every
time a node is about to move, it tosses a coin do decide whether
to move or not. If not, the node continues in a pause moment. In
this scenario, only 60% of nodes are mobile, and have a moving
probability of 80%.

Fig. 8a shows a small caveat of DCS: increasing node speed lowers
the notifications success ratio. We reckon this happens because
every node inside a cell is supposed to have the same state and
work collaboratively as one. But, the intra-cell communication
primitive is the unreliable one-hop broadcast. Thus, nodes inside a
cell may not receive the same messages. Mobility may create even
more entropy in the cell state.

Fig. 8b presents a byproduct of the location-aware retrieval strat-
egy used by DCS. While, ES and LS are required to retrieve data
from a specific place, DCS might have different replicas for retrieval
at its disposal, and it can choose the one closer to the requester.

7.6 Discussion

Thyme-ES presents a baseline. It has an external, centralized com-
ponent where all the system’s data is stored. Being a centralized
server, it presents itself as a bottleneck and a single point of fail-
ure. Thus, if it fails, the service will be totally unavailable. If that
assumption is not an issue, then Thyme-ES can be an option. How-
ever, only for small scenarios, since the evaluation shows that, as
the system grows, the server component rapidly becomes the main
bottleneck (§7.3). In this approach, the centralized component re-
sides close to the client nodes. If that was not the case, and it would
reside in the cloud, we would see even higher latencies.

Due to its flooding approach, Thyme-LS causes far more interfer-
ences than Thyme-DCS. This is exacerbated the larger the network
is (§7.3). Churn is also a concern for Thyme-LS, because insertions
are only executed locally (§7.4). In summary, Thyme-LS can be
suitable for smaller scenarios (i.e., with a small number of nodes)
with no data availability requirements.

Thyme-DCS leverages geographic routing to employ replication,
and location-aware data retrieval. However, one-hop broadcast is
unreliable by nature, thus the assumption that every node inside a
cell has the same state needs to be relaxed (§7.5). The loose coupling
provided by the publish/subscribe (P/S), jointly with the employed
replication mechanisms, showed to contribute to the resilience of
Thyme-DCS to node failure and churn. Thus, Thyme-DCS is more
suitable for larger scenarios with moderate mobility (and can cope
with reasonable levels of churn).

In sum, these three approaches have very different characteristics.
Which one is appropriate for a specific setting will depend on the
conditions of the environment and the nature of the workload. Thus,
we stress that Thyme-DCS is not always the approach of choice,
but rather that under some conditions it is preferable. In fact, the
perfect case is a system that embodies all of these approaches, and
users can choose which to use according to the task at hand.

Overall, this reactive storage concept makes a fundamental over-
head shift. Instead of requiring users to explicitly search for avail-
able data, it allows them to register queries (with well defined time
scopes) and be notified as relevant data is stored in the system. As a
consequence, the overhead of the stakeholders that actually benefit
more from this approach—users requesting data—is moved to the
stakeholders that do not benefit directly from it—users that have
data and can provide it. However, we reckon that users usually
do not mind sharing their resources just for a greater good (e.g.,
peer-to-peer (P2P) systems), or if they can also benefit from what
the systems have to offer.

Other compelling reasons in favor of this concept are the vol-
unteer computing [3] and the crowdsourcing [11] hypes. Volunteer
computing uses computing resources (e.g., processing power, stor-
age) donated by the general public to do scientific computing [2].
Crowdsourcing is a type of participative online activity in which
an entity proposes to a group of individuals the voluntary under-
taking of a task entailing mutual benefit [14]. This idea has been

MobiQuitous, November 12–14, 2019, Houston, TX, USA João A. Silva et al.

extensively used as a cost-effective way of harnessing the collective
power of multiple individuals.

With all these aspects in mind, it makes sense to crowdsource the
computing and storage resources of a collection of nearby mobile
devices to support a new generation of applications. Furthermore,
people have shown to be receptive to the idea of harnessing the
individual resources in order to make sense of the old motto “unity
is strength”.

8 CONCLUSION

In this paper, we present the concept of a time-aware reactive
storage, that fuses the P/S paradigm with the storage substrate,
providing persistent publications and allowing queries (i.e., sub-
scriptions) within a specific time scope. The insert operation of
the storage substrate is merged with the publish operation of the
P/S system, enabling applications to be notified as relevant data
is generated and stored. We also describe Thyme, a novel time-
aware reactive data storage system for wireless edge networks. We
detail two different approaches. Thyme-LS follows a lightweight un-
structured approach using local storage and query flooding, while
Thyme-DCS employs a DCS approach using a storage substrate
built over a cell-based GHT for wireless networks.

Our evaluation shows thatThyme allows the reliable and efficient
notification and retrieval of relevant data with low overhead and
latency, even under node failures. However, each approach displays
a different behavior and may be best suited for scenarios with
certain characteristics (§7.6).

This work can be seen has a first step towards a data storage and
dissemination system for a wide-area setting, like a campus or a
music festival. In this scenario, data will still be stored in the devices,
and communication will mostly be device-to-device to offload it
from the network infrastructure.

As future work, we highlight the evaluation of our Android pro-
totype [6] in realistic scenarios; the integration of our approach
with opportunistic infrastructure support [36]; tackling the load im-
balance issues resulting from large amounts of data referencing only
a few very popular tags; and privacy and security concerns (mainly
access control and trust).

ACKNOWLEDGMENTS

This work was partially supported by FCT-MCTES via project
PTDC/CCI-COM/32166/2017 (DeDuCe), UID/CEC/04516/2019, and
grant SFRH/BD/99486/2014; and by the European Union via project
LightKone (grant agreement nº732505).

REFERENCES

[1] Marcos K. Aguilera et al. 1999. Matching Events in a Content-based Subscription
System. In Symposium on Principles of Distributed Computing (PODC ’99). ACM.

[2] David P. Anderson et al. 2002. SETI@Home: An Experiment in Public-resource
Computing. Commun. ACM 45, 11 (Nov. 2002).

[3] David P. Anderson et al. 2006. The Computational and Storage Potential of
Volunteer Computing. In International Symposium on Cluster Computing and the
Grid (CCGRID ’06). IEEE.

[4] Anmobi, Inc. 2014. Xender. http://www.xender.com/. Accessed: 2018-05-07.
[5] Filipe Araújo et al. 2005. CHR: A Distributed Hash Table for Wireless Ad Hoc

Networks. In International Workshop on Distributed Event-based Systems (ICDCSW
’05). IEEE.

[6] Filipe Cerqueira et al. 2017. Towards a Persistent Publish/Subscribe System
for Networks of Mobile Devices. InWorkshop on Middleware for Edge Clouds &
Cloudlets (MECC ’17). ACM.

[7] M. Cilia et al. 2003. Looking into the Past: Enhancing Mobile Publish/Subscribe
Middleware. In International Workshop on Distributed Event-based Systems. ACM.

[8] Cisco. 2017. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2016—2021. Technical Report. Cisco.

[9] Cisco. 2017. The Zettabyte Era: Trends and Analysis. Technical Report. Cisco.
[10] Michael Demmer et al. 2008. TierStore: A Distributed Filesystem for Challenged

Networks in Developing Regions. In Conference on File and Storage Technologies
(FAST ’08). USENIX.

[11] Anhai Doan et al. 2011. Crowdsourcing Systems on the World-Wide Web. Com-
mun. ACM 54, 4 (April 2011).

[12] Utsav Drolia et al. 2015. Krowd: A Key-Value Store for Crowded Venues. In
International Workshop on Mobility in the Evolving Internet Architecture. ACM.

[13] Jeffrey Erman et al. 2013. Understanding the Super-sized Traffic of the Super
Bowl. In Internet Measurement Conference (IMC ’13). ACM.

[14] Enrique Estellés-Arolas et al. 2012. Towards an Integrated Crowdsourcing Defi-
nition. J. Inf. Sci. 38, 2 (April 2012).

[15] Patrick Th. Eugster et al. 2003. The Many Faces of Publish/Subscribe. ACM
Comput. Surv. 35, 2 (June 2003).

[16] Pedro Garcia Lopez et al. 2015. Edge-centric Computing: Vision and Challenges.
SIGCOMM Comput. Commun. Rev. 45, 5 (Sept. 2015).

[17] David Gelernter. 1985. Generative Communication in Linda. ACM Trans. Program.
Lang. Syst. 7, 1 (Jan. 1985).

[18] Wenlu Hu et al. 2016. Quantifying the Impact of Edge Computing on Mobile
Applications. In SIGOPS Asia-Pacific Workshop on Systems (APSys ’16). ACM.

[19] Brad Karp et al. 2000. GPSR: Greedy Perimeter Stateless Routing for Wireless
Networks. In International Conference on Mobile Computing and Networking
(MobiCom ’00). ACM.

[20] Amir R. Khakpour et al. 2010. Chapar: A Persistent Overlay Event System for
MANETs. Mob. Netw. Appl. 15, 6 (Dec. 2010).

[21] João Leitão et al. 2014. Overnesia: A Resilient Overlay Network for Virtual
Super-Peers. In International Symposium on Reliable Distributed Systems. IEEE.

[22] LiveQoS. 2017. SuperBeam. https://superbe.am/. Accessed: 2018-05-07.
[23] Isaí Michel Lombera et al. 2013. Mobile ad-hoc search and retrieval in the iTrust

over Wi-Fi Direct network. In International Conference on Wireless and Mobile
Communications (ICWMC ’13). IARIA.

[24] Jun Luo et al. 2003. PAN: Providing Reliable Storage in Mobile Ad Hoc Networks
with Probabilistic Quorum Systems. In International Symposium on Mobile Ad
Hoc Networking & Computing (MobiHoc ’03). ACM.

[25] Marco Mamei et al. 2009. Programming Pervasive and Mobile Computing Ap-
plications: The TOTA Approach. ACM Trans. Softw. Eng. Methodol. 18, 4 (July
2009).

[26] B.S. Manoj et al. 2007. Communication Challenges in Emergency Response.
Commun. ACM 50, 3 (March 2007).

[27] Andrea Omicini et al. 1999. Tuple Centres for the Coordination of Internet Agents.
In Symposium on Applied Computing (SAC ’99). ACM.

[28] N. Perez Palma et al. 2018. Infrastructureless Pervasive Information Sharing with
COTS Devices and Software. In International Symposium on A World of Wireless,
Mobile and Multimedia Networks (WoWMoM ’18). IEEE.

[29] R. K. Panta et al. 2013. Phoenix: Storage Using an Autonomous Mobile Infra-
structure. IEEE Trans. Parallel Distrib. Syst. 24, 9 (Sept. 2013).

[30] Charles E. Perkins et al. 1994. Highly Dynamic Destination-Sequenced Distance-
Vector Routing (DSDV) for Mobile Computers. In Conference on Communications
Architectures, Protocols and Applications (SIGCOMM ’94). ACM.

[31] Gian Pietro Picco et al. 1999. LIME: Linda Meets Mobility. In International
Conference on Software Engineering (ICSE ’99). ACM.

[32] Anshul Rai et al. 2012. Zee: Zero-effort Crowdsourcing for Indoor Localization.
In International Conference on Mobile Computing and Networking. ACM.

[33] Sylvia Ratnasamy et al. 2002. GHT: A Geographic Hash Table for Data-centric
Storage. In International Workshop on Wireless Sensor Networks and Applications
(WSNA ’02). ACM.

[34] George F. Riley et al. 2010. The ns-3 Network Simulator. In Modeling and Tools
for Network Simulation. Springer.

[35] João A. Silva et al. 2016. Ephemeral Data Storage for Networks of Hand-Held
Devices. In International Symposium on Parallel and Distributed Processing with
Applications (ISPA ’16). IEEE.

[36] João A. Silva et al. 2016. Towards the Opportunistic Combination of Mobile
Ad-hoc Networks with Infrastructure Access. In Workshop on Middleware for
Edge Clouds & Cloudlets (MECC ’16). ACM.

[37] X. Song et al. 2017. Content Centric Peer Data Sharing in Pervasive Edge Comput-
ing Environments. In International Conference on Distributed Computing Systems
(ICDCS ’17). IEEE.

[38] Jing Su et al. 2007. Haggle: Seamless Networking for Mobile Applications. In
International Conference on Ubiquitous Computing (UbiComp ’07). Springer.

[39] Luis Vargas et al. 2005. Integrating Databases with Publish/Subscribe. In Interna-
tional Workshop on Distributed Event-based Systems (ICDCSW ’05). IEEE.

[40] Thomas Zahn et al. 2005. MADPastry: A DHT Substrate for Practicably Sized
MANETs. In Workshop on Applications and Services in Wireless Networks (ASWN
’05).

http://www.xender.com/
https://superbe.am/

	Abstract
	1 Introduction
	2 Related Work
	3 Time-Aware Reactive Storage
	3.1 Inserting & Publishing Data
	3.2 Deleting Data
	3.3 Subscribing
	3.4 Retrieving Data

	4 The Many Leaves of Thyme
	4.1 System Model
	4.2 Architecture

	5 Thyme-LS
	6 Thyme-DCS
	6.1 Inserting Data
	6.2 Replication
	6.3 Deleting Data
	6.4 Subscribing
	6.5 Retrieving Data
	6.6 Storage Substrate & Routing Layer

	7 Evaluation
	7.1 Implementation
	7.2 Simulator Setup and Methodology
	7.3 Static and Stable Nodes
	7.4 Static but Failing Nodes
	7.5 Mobile but Stable Nodes
	7.6 Discussion

	8 Conclusion
	Acknowledgments
	References

