
ECSCW’97 OOGP workshop 27

DAgora: A Flexible, Scalable and Reliable Object-Oriented Groupware
Platform

Jorge Paulo F. Simão*, Nuno Manuel R. Preguiça*,
Henrique João Domingos, and José Legatheaux Martins

Dept. of Computer Science
Faculty of Sciences and Technology, New University of Lisbon

2825 Monte Caparica - Portugal

{ jsimao,nmp,hj,jalm}@di.fct.unl.pt

*Work partially supported by PRAXIS XXI scholarships.

Abstract

In this paper we describe a flexible, scalable, and
reliable "object-oriented groupware platform" specially
tailored as a foundation to support synchronous,
asynchronous, and multi-synchronous groupware
applications. The platform relies on an hybrid
replication approach where volatile objects are actively
replicated to support synchronous interaction, and
persistent objects are lazily replicated to meet scalability
and availability requirements.

1. Introduction

A wide body of groupware applications, both
synchronous and asynchronous, have been implemented
up to this point. However, most of these applications
continue to be implemented from scratch, relying only on
traditional client/server approaches, without specific
support for groups, and on other non scalable and
unreliable technologies. This imposes a considerable
burden on application programmers and distracts them
from applications main issues.

Some attempts have been made to provide general
groupware frameworks and toolkits to help programmers
in the process of structuring and implementing
groupware applications [1,2]. These frameworks,
however, do not usually provide generic mechanisms and
impose or suggest particular politi cs targeted to a narrow
range of applications. Current distributed object systems
although very useful in general settings, are also only of
limited utilit y as platforms to support groupware. Often,
they fail to take into account the specific requirements of
groupware applications, namely, the requirement for low-
latency in system/application operation [3], and the need
for shared feedback awareness of group and user

activities [4]. It seems that a gap is yet to be fill ed
between the mechanisms of distributed object systems,
currently available groupware frameworks and toolkits,
and the wide variety of possible groupware applications.

In this paper we outline an ongoing research work to
devise an object-oriented groupware platform specially
tailored as a foundation to structure and implement
groupware applications. The requirement to support
synchronous, asynchronous (both in connected and
disconnected mode of operation), and multi-synchronous
groupware applications, and the requirements for
flexibilit y, scalabilit y, and reliabilit y, has lead us to
deploy an hybrid object replication approach based on the
peer object-group design pattern and a loosely connected,
replicated object store service.

The rest of this paper is organized as follows. In
section 2 we describe the overall architecture underlying
the platform and provide the rationale for it. In section 3
the peer object-group design pattern is introduced as a
means to structure synchronous groupware applications.
In section 4 we describe the object storage service, which
allows both connected and disconnected modes of
operation. Session 5 refers to the combined use of the
provided services and abstractions. Session 6 comments
on current experience, as well as on ongoing and future
work. Finally, session 7 concludes the paper.

2. An Architecture to Support Cooperation

Groupware application can broadly be characterized as
synchronous or asynchronous. In asynchronous
groupware users work not necessaril y in the same time-
frame and interact for long periods of time (e.g. in the
joint development of a software project). In synchronous
groupware users work in a tightly-coupled manner



ECSCW’97 OOGP workshop 28

during relatively short common time-frame (e.g. during a
distributed meeting). The synchronous and asynchronous
cooperation paradigms are not alternatives, but rather
complementary; real work is most often performed
alternating asynchronous work with synchronized
periods. Furthermore, the synchronous and asynchronous
characterizations only represent the edges of a
continuous spectrum representing different time-frames
between which users see each others work and interact.
Intermediate degrees of interaction are possible. Some
applications may even support different levels of
synchronization - multi-synchronous applications. This
calls for a flexible platform encompassing the
mechanisms required for each case.

In our platform we make a clear distinction between
volatile, actively replicated objects, and persistent, lazily
replicated objects. Volatile objects are manipulated in the
context of synchronous sessions, and are actively
replicated at the users' workstations using tightly-coupled
group communication services (section 3). This enables
low-latency on object manipulation and activity
awareness functionalities. The li fetime of the shared
workspace manipulated in a synchronous session is
limited to the duration of the session. Mapping to
persistent objects, if required, is performed by the
application or other layers of the system (section 5).

Persistent objects are managed by a global,
distributed and replicated object storage service. Objects
are aggregated in volumes which constitute the unit for
replication. Each volume is managed by a collection of
servers which lazily replicate the volume and the objects
contained in it using epidemic techniques. Clients cache
objects and perform operations locally, possibly in a
disconnected mode of operation. Latter, logged object
updates are reintegrated in the system. Confli cting
updates are handled accordingly to operations semantics
(section 4). Figure 1 illustrates the overall architecture.

The rationale to introduce two kinds of objects -
actively replicated, volatile objects, and lazily replicated,
persistent objects, is because the approach promotes
system flexibilit y, eff iciency, scalabilit y, and reliabilit y.
Flexibilit y and eff iciency is improved mainly because the
typical granularity of update operations involved in
synchronous groupware is finer than for the
asynchronous case (e.g. in a text editing application, a
character or paragraph granularity may be used for
synchronous edition, and for asynchronous edition the
chapter or document level may be selected). For
synchronous groupware, actively replicated objects
provide the means for the required levels of shared
feedback awareness and thightly-coupled cooperation. On
the other hand, persistent objects are used to store
durable parts of the shared workspace. The programmer

uses in each case the replication model and persistence
options that better suit application needs. In particular,
some objects may not require persistent storage and some
persistent objects may not require synchronous
cooperative editing.

Scalabilit y is promoted because persistent objects are
lazily replicated and users may access objects at the
closest available server. In synchronous sessions, the
number of expected interacting users is smaller so strong
consistency object replication and group protocols are a
realistic and feasible approach.

Finally, reliabilit y and high availabilit y arises from
the high degree of object replication; users workstations
replicate all objects required for user operation. In the
synchronous case, the volatile objects ensure that a user
can continue to work even if other users workstations or
storage servers fail or become unreachable. In the
asynchronous case, cached persistent objects allow users
to operate in a disconnected mode of operation, and
object replication at servers ensure high availabilit y in
object access. In both models, low-latency is achieved
using appropriate optimistic replication techniques and
particularly tailored protocols.

S2
Stationary Computer
in a LAN or MAN

Synchronous Session

WORKSPACE 2

S4S4´

WORKSPACE 4

User WorkStation

Remote Stationary
Personal Computer

Closly-Coupled
Cooperative
Workgroup

WORKSPACE 1

Object-Store
Server

S1

Mobile
Participant

Wired
Phone Link

Global Object
Storage
Service

Mobile
Participant

celular / wireless
internetworking

S3

WORKSPACE 3

Figure 1 - The DAgora architecture.

3. Synchronous Groupware Support

We use the peer object-group design pattern as the main
structuring abstraction to support synchronous groupware
[5]. In the peer object-group approach, the shared
workspace managed by applications is materialized as a
collection of shared objects replicated amongst users
workstations. Each workstation holds a replica for every
object the associated user is currently accessing or
working on. The set of replicas for a given object
constitutes a peer object-group. Appropriate consistency
criteria amongst the replicas is kept using group-
communication services. Shared objects are mapped to



ECSCW’97 OOGP workshop 29

(object-)groups and operations on the objects are mapped
to (reliable) multicast operations. Users gain access to
objects by dynamically joining the corresponding object-
groups - which may involve the transparent transfer of
the object's current state to the local replica. When no
longer interested in the objects, users leave the object-
groups. Figure 2 schematically illustrates the model.

O bj ectG r oup 1

O bj ectG r oup 2

O bj ectG r oup 3

User A

User B

L arge Scal e
Unrel iable
Network
Infrastructure

User C

User D

Proccess
Address 
Space

Proccess
Address Space

Proccess 
Address Space

Proccess
Address 
Space

Object Repli cas

K ey:

Figure 2 - The peer object-group design
pattern.

Different shared-objects require different replication
consistency requirements, meaning that group-protocols
with different service semantics are required. To
accommodate this diversity we have implemented a
generic object-oriented framework for protocol
implementation and composition as in [6]. Different
protocol semantics are encapsulated in different classes,
and concrete protocol layers are created as instance of
those classes. Complete protocol structures (or stacks) are
built attaching protocols objects together.

In the implementation of specific group-protocols we
have taken in great consideration groupware specifics.
Because users objects working-sets are expected to
change often during the li fetime of a session and users
should be able to enter and leave sessions dynamically,
dynamic lightweight group membership services were
used. In particular, we have specified a new membership
and reliable multicast service semantics - linear
convergent synchrony, which is weaker than view
synchrony [7], the usually provided semantics by group
communication toolkits, and can be implemented by
protocols which incur less overhead for group
membership management. Instead of requiring messages

to be deli vered in the same view by all members, we
allow messages to be deli vered in future views, but
always before the view which removes the sending
members [8]. The semantics and protocol are linear, i.e
view and state merging is not allowed. This is motivated
by the already available state reconciliation service
provided by the external object store - case volatile
objects are mapped to persistent ones. Moreover, it is
expect that partitioning during the li fetime of a
synchronous session is a rare event (provided that
suitable failure suspectors are used). This approach also
simplifies synchronous applications design. The protocol
uses a specially tailored FIFO reliable multicast protocol,
which does not incur high overhead for connection
management.

To provide adequate levels in system response times,
we have anticipated the need for optimistic ordering and
concurrency control techniques. In particular, the
Undo/Redo deli very paradigm is provided as an option to
reduce update latency [9]. In this paradigm messages are
delivered locally while asynchronously multicasted to the
group. If ordering confli cts arise, some previously
delivered messages/updates may have to be
undone/redone, but operations semantics (e.g. the
commutative property) are explored to reduce the
probabilit y of this event. Other ordering services, namely,
total, causal and FIFO ordering of messages, and state
transfer protocols for transparent and highly concurrent
object state transfer are also provided.

Since the shared workspace of a synchronous session
is constituted not by a single object-group but by a
collection of them, services and abstractions are required
for managing the workspace as a whole. This includes
services for naming/binding to sessions, the creation and
management of object-groups, and services to enable user
activity awareness.

We have defined and implemented an extensible
distributed object model which provides those services. In
addition to allow programmers to create replicated
objects supported by selected protocol structures, the
model introduces the concept of a fully replicated Session
object. A Session object is supported by a special
bootstrap object-group, which all users must join to enter
a session, that actively maintains information about the
shared workspace, namely, information about created
object-groups and users participating in the session. The
binding information required to enter a session is fetched
from an external service (e.g. the object store service).
From an application programmer perspective, she/he can
invoke the methods of a Session object to create, destroy,
join or leave object-groups and to obtain information
about users. A reactive programming style can also be
used to act on session related events (e.g. a user entering



ECSCW’97 OOGP workshop 30

or leaving a session, or an object-group being created or
destroyed). Conceptually, we abstract an application as a
collection of shared object(-groups) and users organized
around the fully replicated Session object. Figure 3
depicts an intuitive view of the distributed objects model.

Session Object SessionBindingService Object

Client Side 
Code

Communication to

External
Session Binding

Service

Other Application Objects

Proccess Address Space

Object-Group Directory

ObjectGroup

Object-Group

User Directory

.. 
.

Binding
&

Management
Data

key

key User
Data

.. 
.

UserRecord

Shared  Application Object

Application
Code

Layer 3

Layer 2

Layer 1

Protocol 
Structure

Figure 3 - Objects conceptual model.

4. Object Storage and Asynchronous
Groupware Support

In this section we will describe the object storage service
of our platform. As suggested before, to meet scalability
and reliabilit y requirements a system must employ
intensive caching and replication techniques.
Additionally, for effective support of asynchronous
groupware a system should be able to: allow several users
to modify the same data concurrently even if operating in
a disconnect mode, not restricting their actions besides
usual access control mechanisms and coordination rules'
enforcement; conjugate all concurrent modifications in
the resulting data; and enable type specific resolution of
conflicting updates.

To gain access to the persistent objects managed by
an object store a (client) user process creates a local copy
of it; future operations are performed locally without
requiring communication with the servers of the object
store. Update methods invocations are logged by clients,
until later re-integration with an object copy located at
the object store.  Updates performed concurrently by
different users, are combined as logged updates are
propagated to servers. Server procedures ensures that

updates are ordered accordingly to consistency criteria
selected on a per object class basis. If confli cts updates
not amenable to be solved automatically by the system
arise, users are asynchronously notified; task related
coordination is expected to make this an unlikely event.

To provide a reasonable degree of autonomy, users
local environments cache the objects needed for user
activity. This enables them to continue work even when
no server is accessible (due to communication failures or
voluntary disconnection). Our current caching strategy
makes decisions based only on recent access, but more
complex and aggressive strategies based on pre-fetching
of sets of related objects and statistical analysis of user
activity can be considered [10,11].

Persistent objects are organized in volumes, which
are sets of related objects.  For user convenience, a
volume is internally organized as an hierarchical space of
objects identified by symbolic names (as in traditional
file systems). We anticipated that different volumes be
assigned to different collaborative work groups, allowing
administrative boundaries and case-dependent access-
control and security politics to be established.

Each volume is replicated by a (possibly)
dynamically variable set of servers, using an epidemic
communication infrastructure [12,13]. Defined pairs of
servers communicate with each other, from time to time,
to synchronize their current knowledge of objects state.
Provided that the communicating pairs form a fully
connected graph of replicating servers, object updates are
eventually propagated to all servers. The concrete
topological placement of server (pairs) should be
conducted by the requirements of minimizing
communication overhead (considering both server and
client needs), distribution of server workload, and
reducing probabilit y of client isolation from all servers.
Appropriate placement of servers, scheduling of server
epidemic interaction, and structuring of objects in
volumes is required to promote system scalabilit y and
availability.

When a pair of servers engages in a epidemic
interaction, they must determine which updates must be
propagated to the other server. This is be done by
identifying update (sequences) with time-vectors [14],
and comparing them with time-vectors reported by the
peer. Update stabilit y is checked using an acknowledge
time-vector [13]. After server interaction, the newly
received updates are logged for each object, and applied
to the server's local copy accordingly to the ordering
constraints selected. Class programmers may select one
of the available orderings or (meta-)program new log
orderings. Currently, we provide causal ordering, free
ordering, (pessimistic) total ordering, optimistic total
ordering with undo/redo, and optimistic total ordering.



ECSCW’97 OOGP workshop 31

When using optimistic total ordering, confli cting updates
may cause the system to notify users, if unable to resolve
them automatically (e.g. using operation semantic
information). Figure 4 pictorially represents the object
store architecture.

Because the set of servers managing each volume
may vary with time, a state transfer mechanism exist to
allow new servers to contact an existing server to obtain
the volume's content and join volume's replicating server
set. Membership information is managed by a special
volume object which is propagated during epidemic
interactions. Servers automatically resolve confli cting
views of the membership before proceeding with normal
operation.

Vol.
Foo

Vol.
Bar

Vol.
Baz

Vol.
Bar

Object Storage
Servers

Vol.
Baz

Vol.
Bar

Vol.
Baz

Client

Baz.Fum

Front-End

Application

OOS 1

OOS 2 OOS 3

OOS 4

Figure 4 - Object Store architecture.

5. Combined use of Synchronous and
Asynchronous Support

While we have made a clear distinction between volatile
and persistent objects, in medium or long-term real
cooperation scenarios the two abstractions must be used
in combination. Persistent objects convey the durable part
of the cooperative workspace, volatile objects provide the
means for users to engage in tightly-coupled interactions.
The synchronous and asynchronous interaction modes
also benefit from each other. Information related with
synchronous sessions (e.g. naming/binding,
browsing/awareness and user information) can be
persistently saved in the object store. On the other hand,
confli cts updates to persistent objects detected by the
object store and reported to users can be conveniently
resolved using synchronous groupware merging tools.
We are investigating issues related to the transparent
mapping of the two kinds of objects for those cases in
which that is required.

6. Experience, Ongoing and Future Work

Because we wanted to maximize flexibilit y, allow
application and system components to be loaded on-
demand, and support heterogeneity, we have chosen the
Java language for implementing our system [15]. The
integration with the Web was an additional motivation.

As an initial effort to test the suitabilit y of the
synchronous groupware support, we have implemented a
demo white-board tool. It is a simple tool which manages
a shared drawing canvas and requires only one object-
group to be implemented. It was tested with only a small
number of users in a local network. In this restricted
setting, system response has revealed to be quite
acceptable, i.e. system performance did not suffer
significant degradation when operating on replicated
shared objects. Additional experience and performance
measures are required to analyse system behaviour in
more general environments.

To test the suitabilit y of the asynchronous groupware
support we have defined a simple class of structured
persistent objects. These objects are composed of
containers, that contain leaves and/or other containers,
and leaves, containing data with (possibly) multiple
versions.  We have also implemented a simple text editor
that allows several users to asynchronously edit the same
document. A document is supported by a persistent object
and the document structure is mapped to the object's
structure (e.g. a document is a container of chapters, a
chapter a container of sections or a text leaf, and so on).
When all users save their changes, the final document
reflects all changes, and concurrent changes to the same
leaves (chapters/sections text) are resolved by creating
multiple versions of the conflicting components.

Many potential work directions were revealed during
the course of our work. In the synchronous support, we
plan to continue the process of specifying suitable group-
communication semantics and implementing new
protocols to support object-groups. In particular, we
expect to develop layers for light-weighted groups, which
in turn may call for the definition of multiple-group
service semantics. Failure-detectors consistency should
also be addressed. In the asynchronous support, we
intend to develop a generic event notification service to
provide users with shared feedback awareness of
activities related with the persistent workspace. We also
intend to implement the confli cts notification service
with the generic notifications mechanisms. Common to
both the synchronous and asynchronous support, we
expect to tackle the always important issue of access
control and security, and plan to develop additional tools
and applications to help validating more clearly the
usefulness of the abstractions outlined in the paper.



ECSCW’97 OOGP workshop 32

Finally, we intend to build appropriated linguistic
support to simplify the task of applications programming.

7. Conclusions

Our work contribution is two-folded: identify the
abstractions required to adequately support groupware
and study the technical problems involved in the
realization of them; devise a platform based on those
abstraction to be used in the development of realistic
groupware applications.

We believe that the provision of several kinds of
objects by an object-oriented groupware platform
promotes flexibilit y in application programming, because
groupware applications are very broad in range.
Programmers are free to make use of the abstractions that
better suit their needs. In particular, an object store is
suitable to support asynchronous cooperation and
manage the persistent part of shared workspaces, and
peer object-groups are a suitable base abstraction to
structure and implement synchronous applications.
Because modern cooperation scenarios may involve many
entities, scattered world-wide, possibly using the Internet
as the main cooperation infrastructure, scalabilit y and
reliabilit y are important requirements. Still, further
research is yet required to more clearly validate the
usefulness of the identified abstractions and mechanisms.
Incorporation in standard distributed object systems can
also be a contribution in that direction.

References

[1] Mark Roseman, and Saul Greenberg, "GroupKit: A
Groupware Toolkit for Building Real-Time Conferencing
Applications", Proc. ACM CSCW 92, November 1992.

[2] Tim Kindberg, George Couloris, Jean Dollimore and Jyrki
Heikkien, "Sharing Objects over the Internet: the
Mushroom Approach", IEEE Global Internet 96, London,
November 1996.

[3] C.A. Ellis, S.J. Gibbs and G.L. Rein, "Groupware - Some
issues and experience", Communication of the ACM, vol.
34, n.1, January 1991.

[4] Paul Dourish, and Victoria Belloti, "Awareness and
Coordination in Shared Workspaces", Proc. CSCW 92,
November 1992.

[5] Jorge Simao, J. Legatheaux Martins, Henrique Domingos,
and Nuno Preguica, "Supporting Groupware with Peer
Object-Groups", USENIX COOTS`97, "Reliable
Distributed Objects Panel", Portland/Oregon, June 1997.

[6] Robbert van Renesse, Kenneth Birman, Roy Fridman, Mark
Hayden, and David A. Karr, "A Framework for Protocol
Composition in Horus", Proc. 14th IEEE International
Conference on Distributed Computing Systems, 1994.

[7] Kenneth P. Birman, and Thomas A. Joseph, "Exploiting
Virtual Synchrony in Distributed Systems", Department of
Computer Science, Cornell University, 1987.

[8] Jorge Simao, "System Support for Distributed Synchronous
Groupware Applications", MSc. Thesis, Dept. Computer
Science, New University of Lisbon, July 1997.

[9] Alain Karsenty, and Michel Beaudouin-Lafon, "An
Algorithm for Distributed Groupware Applications", Proc.
13th IEEE International Conference on Distributed
Computing Systems, 1993.

[10] G. Kuenning, "The Design of the Seer Predictive Caching
System", IEEE, 1994.

[11] J. Kistler, and M. Satyanarayanan, "Disconnected
Operation in the Coda File System", Proc. 13th ACM
SOSP, 1991.

[12] Rivka Ladin, et al., "Providing High Availability Using
Lazy Replication", ACM Transactions on Computer
Systems, 10(4):360-391, November 1992.

[13] Richard Golding, "Weak-consistency group communication
and membership", Ph.D dissertation, University of
California - Santa Cruz, December 1992.

[14] D. Parker, et al., "Detection of Mutual Inconsistency in
Distributed Systems", IEEE Transactions on Software
Engineering, vol.  SE-9(3):240-247, May 1983.

[15] James Gosling, and Henry McGilton, "The Java(tm)
Language Environment: A White Paper", Sun
Microsystems, 1995.


