
Merging OT and CRDT Algorithms ∗

Ahmed-Nacer Mehdi † Pascal Urso ‡

Université de Lorraine

LORIA, INRIA

Valter Balegas § Nuno Perguiça ¶

CITI/FCT-Universidade

Nova de Lisboa

Abstract

Nowadays, a large number of collaborative editing appli-

cations have been developed. Some of them are deployed

on the cloud such as Google Drive and Microsoft Office

at SkyDrive. Massively used editing systems make use of

operational transformation (OT), a traditional replication

mechanism for concurrent document editing. Such algo-

rithms do not scale well in peer-to-peer environments with

dynamic groups. Recently, Commutative Replicated Data

Types (CRDTs) were introduced as a new class of replication

mechanisms whose concurrent operations are designed to be

natively commutative. They ensure consistency of highly

dynamic contents on peer-to-peer networks.

Through this paper, we propose an architecture to take

advantage of both approaches – OT and CRDT – and to im-

prove the performance of collaborative editing applications.

We merge both algorithms on the proposed architecture and

we study their suitability.

Categories and Subject Descriptors I.7.1 [Document and

Text Processing]: Document and Text Editing; D.2.8 [Soft-

ware Engineering]: Metrics—complexity measures, erfor-

mance measures; C.2.4 [Computer-Communication Net-

works]: Distributed Systems—Distributed applications

General Terms Algorithms, Experimentation, Performance

∗ This research was partially supported by FCT/MCT projects PEst-

OE/EEI/UI0527/2011 and PTDC/EEI-SCR/1837/2012; by the European

Union Seventh Framework Programme (FP7/2007-2013) under grant agree-

ment no 609551, SyncFree project.
† mahmedna@loria.fr
‡ pascal.urso@loria.fr
§ v.sousa@campus.fct.unl.pt
¶ nuno.preguica@fct.unl.pt

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PaPEC’14, April 14 - 17 2014, Amsterdam, Netherlands.
Copyright c© 2014 ACM 978-1-4503-2716-9/14/04. . . $15.00.
http://dx.doi.org/10.1145/10.1145/2596631.2596636

Keywords Collaborative Editing, Commutative Replicated

Data Types, Operational Transformation, Cloud, Algorithms,

Experimentation, Performance

1. Introduction

Collaborative editing systems allow multiple users to work

over the same shared documents.

To support disconnected work and achieve high respon-

siveness, data are optimistically replicated [9]. CAP theo-

rem [4, 6] states that it is impossible to achieve simultane-

ously strong consistency (C), availability (A) and to tolerate

network partition (P). In Eventual Consistency (EC) model,

the replicas are allowed to diverge, but must eventually reach

the same value if no more mutations occur. Eventual consis-

tency promises better availability, performance and can be

obtained in large-scale systems.

It is essential to maintain the user’s perceived latency low,

otherwise users may get frustrated and quit the application.

In addition, to achieve high availability, operations can be

executed locally without coordination, which induce replica

divergence.

In real-time collaborative editing applications, the modi-

fications are propagated to other members of the group upon

execution. In recent years, a new generation of real-time col-

laborative editing tools have been developed. These applica-

tions are deployed on the cloud such as Google Drive [1]

and Microsoft Office at SkyDrive [2]. They aim to provide

a good environment for collaboration by supporting large

number of users and provide a considerable data storage.

Operational transformation (OT) has been used in real-

time collaboration [5, 11] for decades. This approach trans-

forms the index of an operations to take into account the

effects of concurrent operations and assure replica conver-

gence. There are different architectures for deploying OT

systems: centralized solutions use a central sequencer, which

fails to provide low latency for remote client [12]. On the

other hand, decentralized solutions use event tracking mech-

anisms that incur in high meta-data overheads that grow with

the number of clients [11]. A few commercial document

editing systems such as Google Docs adopt centralized OT

algorithms, such as Jupiter [8]. This kind of algorithm are

light in the client devices. However, in large system a con-

sensus is needed between data-centers to synchronize the

10
3

10
4

10
5

10
6

10
7

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
 (

in
 n

a
n

o
se

co
n

d
s)

operation

CRDT Clients
OTClients

(a) Local execution time

10
2

10
3

10
4

10
5

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
 (

in
 n

a
n

o
se

co
n

d
s)

operation

CRDT Clients
OT Clients

(b) Time of integration

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

 M
e

m
o

ry
 (

b
yt

e
s)

Operation

CRDT Clients
OT Clients

(c) Messages size

tel(R) Xeon(R) 5160 dual-core processor, that has installed

GNU/Linux 12.0.4 LTS.

To observe the benefits of our proposed architecture, we

made two experiments:

1. OT/CRDT: We deploy SOCT4 algorithm in each client,

and keeping the data-centers with OT-CRDT.

2. CRDT/CRDT: We deploy in both clients and data-centers

only CRDT algorithm.

The local execution time in SOCT4 algorithm is much

better than Logoot algorithm. Indeed, Logoot algorithm

needs to generate a unique identifier for each operation dur-

ing the local execution. While, SOCT4 algorithm executes

the local operation directly and do not need any identifier.

Accordingly to the nature of OT algorithms, the perfor-

mances of SOCT4 eventually degrade over time, during the

integration of the remote operation. Indeed, the algorithm

has to parse all history of operations and transform the cur-

rent operation with the concurrent one. However, using Lo-

goot algorithm, the client has just to find the correct position

of the identifier.

The size of messages sent by the clients that use SOCT4

algorithm is much lower than generated by CRDT algorithm.

In addition to the content of the operation, Logoot integrates

also the identifier of the operation. The size of these identi-

fiers grows quickly when the clients insert between two con-

secutive characters, for instance a case of copy/paste. While,

SOCT4 algorithm has just to add an integer in the operation

– timestamp – to help the clients to detect the concurrent

operations.

The architecture based on OT/CRDT should be more ef-

ficient than CRDT/CRDT. Indeed, OT/CRDT perform well

in local execution time and size of messages. So, the latency

should be reduced between the clients. The only disadvan-

tage of this combination is during the integration of the re-

mote operation. However, the performance remains accept-

able since they do not exceed 50ms [7]. In order to reduce

the time of the integration of a remote operation, it is possi-

ble to prune the history buffer by using a garbage collection

mechanism [11]. Clients can use this mechanism to remove

operations they know to be received by all other clients.

5. Conclusion and Future Work

In this paper, we proposed an architecture of the collabora-

tive editing application deployed on the cloud. We evaluated

the performance of OT and CRDT algorithms and we stud-

ied their suitability in such applications.

We found that, collaborative editing applications can be

improved by merging OT and CRDT approaches. Based on

this solution, the applications support more developers, re-

duce the flow in the network and the latency between the

clients. In addition, the proposed architecture does not re-

quire a consensus across the data-centers to synchronize the

distributed sequencer. In contrary to centralized OT editing

systems, our solution ensures eventual consistency, avail-

ability and the partition tolerance.

In this paper, all the clients have been executed in the

same EC2 machine, we computed the average local/remote

execution time and the size of messages for each client. Our

directions for future work is to deploy this architecture in the

cloud, where each client and server is deployed in indepen-

dent machine. Then, we study the behaviors of algorithms,

and measure the delay that take an operation between the

clients.

References

[1] Google drive. https://drive.google.com.

[2] Microsoft skydrive, 2013. https://skydrive.live.com/.

[3] M. Ahmed-Nacer, C.-L. Ignat, G. Oster, H.-G. Roh, and

P. Urso. Evaluating crdts for real-time document editing.

In ACM, editor, ACM Symposium on Document Engineering,

page 10 pages, San Francisco, CA, USA, september 2011.

[4] E. A. Brewer. Towards robust distributed systems (abstract).

In Proceedings of the nineteenth annual ACM symposium on

Principles of distributed computing, PODC ’00, pages 7–,

New York, NY, USA, 2000. ACM.

[5] C. A. Ellis and S. J. Gibbs. Concurrency control in groupware

systems. In J. Clifford, B. G. Lindsay, and D. Maier, editors,

SIGMOD Conference, pages 399–407. ACM Press, 1989.

[6] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasi-

bility of consistent, available, partition-tolerant web services.

SIGACT News, 33:51–59, June 2002.

[7] C. Jay, M. Glencross, and R. Hubbold. Modeling the effects

of delayed haptic and visual feedback in a collaborative vir-

tual environment. ACM Transactions on Computer-Human

Interaction, 14(2), August 2007.

[8] D. A. Nichols, P. Curtis, M. Dixon, and J. Lamping. High-

latency, low-bandwidth windowing in the jupiter collaboration

system. In Proceedings of the 8th annual ACM symposium

on User interface and software technology, UIST ’95, pages

111–120, New York, NY, USA, 1995. ACM.

[9] Y. Saito and M. Shapiro. Optimistic replication. ACM Com-

puting Surveys, 37(1):42–81, 2005.

[10] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski.

Conflict-free replicated data types. In X. Défago, F. Petit, and

V. Villain, editors, Stabilization, Safety, and Security of Dis-

tributed Systems (SSS), volume 6976, pages 386–400, Greno-

ble, France, October 2011.

[11] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving

convergence, causality preservation, and intention preserva-

tion in real-time cooperative editing systems. ACM Trans-

actions on Computer-Human Interaction (TOCHI), 5(1):63–

108, March 1998.

[12] N. Vidot, M. Cart, J. Ferrié, and M. Suleiman. Copies conver-

gence in a distributed real-time collaborative environment. In

Proceedings of the 2000 ACM conference on Computer sup-

ported cooperative work, CSCW ’00, pages 171–180, New

York, NY, USA, 2000. ACM.

[13] S. Weiss, P. Urso, and P. Molli. Logoot: A scalable opti-

mistic replication algorithm for collaborative editing on p2p

networks. In 29th IEEE International Conference on Dis-

tributed Computing Systems (ICDCS 2009), pages 404 –412,

Montréal, Québec, Canada, jun. 2009. IEEE Computer Soci-

ety.

