
Making Weak Consistency Great Again

Valter Balegas, Sérgio Duarte
Carla Ferreira, Nuno Preguiça

NOVA LINCS & DI, FCT, Universidade NOVA de
Lisboa

Rodrigo Rodrigues
INESC-ID & IST, University of Lisbon

ABSTRACT
This paper focuses on the problem of implementing web
applications on top of weakly consistent geo-replicated sys-
tems. Several techniques, such as CRDTs, have been pro-
posed to achieve state convergence on a per-object and per-
data type basis. However, that does not guarantee appli-
cation correctness, as convergence rules applied individually
at each object may lead to an invalid state.

We advocate that it is possible to address these problems
and implement correct applications under weak consistency.
To that end, it is necessary to combine CRDTs with novel
semantics, judiciously select the CRDTs that are used by
applications, and transform application operations to guar-
antee that convergence rules, applied on a per-object basis,
always lead to valid application states. Achieving this is
complex and requires tools to help programmers tame the
complexity of programming on top of weak consistency and
make the technology more accessible.

In the presentation of this work we make a demonstra-
tion of a prototype tool that is capable of detecting concur-
rency conflicts on applications and propose transformations
to make them conflict-free.

Keywords
Geo-Replication, Weak Consistency, CRDT

1. INTRODUCTION
The pervasiveness of the Internet in people’s day-to-day

activities led to a paradigm shift in the way developers build
web applications. Nowadays, systems need to scale to un-
precedented levels and provide good quality of service to
users across the globe. Centralized systems are inherently
hard to scale, prone to failure, and provide poor quality of
service for users that access it from remote locations. This
led developers to become more interested in developing dis-
tributed systems that do not suffer from such limitations. In
this context, geo-replication appears as a core technique to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PaPOC’16, April 18-21 2016, London, United Kingdom
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4296-4/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2911151.2911167

implement scalable and responsive distributed systems for
clients scattered across the globe.

Systems that use geo-replication typically provide weaker
forms of consistency in order to allow replicas to process
requests without contacting remote replicas. As a conse-
quence, when the same objects are updated at different lo-
cations, their values diverge and need to be reconciled later.
Conflict-free Replicated Data types (CRDTs) [10] are a prin-
cipled approach to handle replica convergence. These data
types support the reconciliation of multiple divergent copies
of the same object, with a well-defined semantics. Various
systems use CRDTs to provide richer programming models
for developers [5, 11].

Despite the effort to make weak consistency systems eas-
ier to program, this is still a challenging task. In systems
that use strong consistency, application correctness is always
ensured as long as the application’s individual operations
respect the invariants. However, this is not the case for ap-
plications implemented on top of weak consistency, where
developers must carefully ensure that application invariants
hold under concurrent execution. The root of this problem
is that the reconciliation of concurrent updates might pro-
duce a state that is invalid with respect to the application
invariants. Bailis et al. studied several applications available
online and found that many applications built on top of weak
consistency do not provide the expected semantics [2].

In our recent work with bounded counter [4], we designed
a counter that can maintain numeric invariants under the
execution of concurrent updates. The same strategy can
be used with other data types to provide other invariants.
However a more general problem remains unsolved: how to
maintain invariants across multiple objects, without loss of
availability? An example of such invariants is to ensure ref-
erential integrity in relational databases. Previous research
addressed this issue by constraining the operations that can
be executed in each replica in order to preserve data in-
tegrity [3, 8]. Whenever a replica receives a request to exe-
cute an operation that might violate an invariant, the replica
must coordinate with remote replicas to ensure that the op-
eration is safe. Although this coordination may sometimes
be executed outside of the critical execution path of opera-
tions, a replica can always be prevented from executing some
operation because it needs to contact a remote replica that
is unavailable.

In this paper, we study the example of referential integrity
and show how to transform an application to provide that
invariant on top of weak consistency. We discuss different
semantics to solve the conflict without constraining concur-

http://dx.doi.org/10.1145/2911151.2911167

rency, showing that it is possible to implement scalable and
correct applications on top of weak consistency. We also
present the current status of a tool we are developing to
help developers in that process.

2. RUNNING EXAMPLE
We chose referential integrity as running example due to

its importance in relational databases and concurrent pro-
gramming in general. We consider a toy database composed
of two entities, A and B. We assume, without loss of gen-
erality, that each entity has a single attribute. There is a
one-to-many relationship Ra→b from elements of A to ele-
ments of B.

Consider the implementation of this example using an
object-relational mapping approach, where entities are mod-
eled as two distinct sets and the relationship between them
are modeled by a third set of pairs (a, b) : a ∈ A, b ∈ B.

We assume that the storage system stores each set in sep-
arate objects and that it provides causal consistency and
atomic updates across multiple objects.

The integrity constraint of this model is broken when
∃(a, b) ∈ Ra→b : a /∈ A ∨ b /∈ B, i.e., there is a relation-
ship between entity a and b, but one or both of them do not
exist. We consider, for simplicity, that the application is cor-
rect under strong consistency, i.e., any sequential execution
of the program does not violate the invariant. An invari-
ant violation only occurs when a client issues an operation
to create a new relation (a, b) while another client issues an
operation to remove a or b from A or B, respectively.

3. BETTER SAFE THAN SORRY
To allow fast execution without constraining concurrency,

every replica must be able to reply to a request without
depending on remote state. Under these circumstances it
is not possible to avoid concurrent executions that might
leave the database in an inconsistent state. Since detecting
conflicts and fixing an invalid database state is expensive,
we propose solving conflicts beforehand, so that execution
is always safe. The idea is that an operation can have extra
effects in order to avoid generating an invalid state when
replicas are reconciled. As a trade-off, the semantics of op-
erations that are implemented this way is limited, but, as
we show next, interesting semantics can be provided with
proper use of convergence rules.

In the next section we describe two alternative solutions
for the problem we described above. In the first solution we
rely exclusively on existing CRDT semantics, while in the
second solution we devise a new convergence rule for con-
current operations to implement an alternative semantics.

3.1 Adding missing elements
When a new element (a, b) is added to Ra→b, the operation

that adds this element to the set of relations must ensure
that a ∈ A and b ∈ B to preserve referential integrity. These
elements might be removed concurrently at other replicas
leading to an invariant violation after replicas reconcile. To
avoid this conflict, we modify the operation that adds (a, b)
to Ra→b to also add a to A and b to B, atomically, and
set the convergence rule of each set to use an Add-Wins
policy [10]. This policy ensures that if an add and remove
operations execute concurrently for the same element, then
the element will be present in the set, cancelling the effects of

the concurrent remove operation. The consequence of these
modifications is that any operation to remove elements a or
b will be cancelled by the additional effect of the operation
that adds (a, b), if they execute concurrently.

3.2 Ensuring that elements are removed
In the previous solution, whenever the conflicting opera-

tions execute, the operation that adds the element to Ra→b

takes precedence over the remove operations. We might also
want the opposite semantics, i.e., that whenever a remove
operation for a or b is issued, we cancel any concurrent oper-
ation that adds an element to Ra→b containing one of those
values. This example is different from the previous one and
cannot be solved in the same way, because we do not know
the possible pairs containing a or b that might be added to
the set, and it would be too expensive to consider the whole
domain of A or B. In the presentation, we present a new set
CRDT that prevents concurrently adding elements to a set
that match a given criteria, without specifying their values.

The intuition behind this new set is to provide a special
touch(Predicate p) operation that accepts a predicate that
specifies which elements we want to prevent adding concur-
rently to the set. This way, whenever we execute a remove
operation for elements a or b, we also execute a touch in
Ra→b that prevent the addition of any pair matching (a, ∗)
or (∗, b), where ∗ means any element of B.

4. TOOLS FOR PROGRAMMING
WEAK CONSISTENCY

In the previous section we saw how to preserve referential
integrity in applications developed on top of weak consis-
tency. Even though the transformations to the operations
are easy to explain, it might be challenging for programmers
to devise them. For this reason, we are also working on tools
that can ease the identification of invariant violations in ap-
plications and propose possible solutions.

We are building a tool that, given the specification of
an application’s operations and invariants, identifies con-
flicts that might arise due to concurrent executions and pro-
poses transformations to the operations to fix them, with-
out strengthening the consistency model that is employed.
The algorithm for identifying conflicts has already been pub-
lished in our previous work [3]. We are extending this tool
to propose transformations to the operations like the ones
we described before. In the presentation we show the tool
in action to solve the referential integrity example.

5. FINAL REMARKS
In this paper we have presented an overview of how to

maintain a specific global invariant over multiple objects in
a weakly consistent replicated system, by making a judi-
cious use of replicated data type semantics. Using a similar
approach in an application is in general rather complex for
programmers, which need to reason about concurrent ex-
ecutions on weakly consistent systems and on the seman-
tics of convergent replicated data types. To address this
problem, we have implemented a tool for helping program-
mers to create applications that maintain global invariants
on top of weakly consistent systems. Our tool identifies
which operations can lead to concurrency issues and pro-
poses the use of appropriate replicated data types and, when
needed, changes to the operations to guarantee that invari-

ants are maintained despite the concurrent operations being
executed. The tool work iteratively, receiving feedback from
the programmer of which result is preferable when conflicts
may arise.

Many recent systems abandoned weak consistency towards
stronger consistency models, as these systems are easier to
program and understand [12, 6], but this comes with costs:
higher latency, lower availability and scalabilty. To miti-
gate these problems, several works have tried to pinpoint
where weak consistency can be used and use strong consis-
tency for everything else [1, 8, 3, 7, 9]. Despite the per-
formance improvements for operations that remain correct
under weak consistency, it does not improve operations that
require strong consistency. The best performance for an ap-
plications might only be achieved if none of its operations
require coordination. Our work shows that it is possible to
execute a larger fraction of operations under weak consis-
tency while still guaranteeing global invariants. To achieve
this in practice, we empower programmers with a tool that
helps them building applications that execute correctly un-
der weak consistency.

Acknowledgments
This research is supported in part by EU FP7 SyncFree
project (609551), FCT/MCT SFRH/BD/87540/2012, PTDC/
EEI-SCR/ 1837/ 2012 and PEst-OE/ EEI/ UI0527/ 2014.
The research of Rodrigo Rodrigues is supported by the Eu-
ropean Research Council under an ERC Starting Grant.

6. REFERENCES
[1] Alvaro, P., Conway, N., Hellerstein, J. M., and

Marczak, W. R. Consistency analysis in bloom: A
calm and collected approach. In In Proceedings 5th
Biennial Conference on Innovative Data Systems
Research (2011), pp. 249–260.

[2] Bailis, P., Fekete, A., Franklin, M. J., Ghodsi,
A., Hellerstein, J. M., and Stoica, I. Feral
concurrency control: An empirical investigation of
modern application integrity. In Proceedings of the
2015 ACM SIGMOD International Conference on
Management of Data (New York, NY, USA, 2015),
SIGMOD ’15, ACM, pp. 1327–1342.

[3] Balegas, V., Duarte, S., Ferreira, C.,
Rodrigues, R., Preguiça, N., Najafzadeh, M.,
and Shapiro, M. Putting consistency back into
eventual consistency. In Proceedings of the Tenth
European Conference on Computer Systems (New
York, NY, USA, 2015), EuroSys ’15, ACM,
pp. 6:1–6:16.

[4] Balegas, V., Serra, D., Duarte, S., Ferreira,
C., Shapiro, M., Rodrigues, R., and Preguiça,
N. M. Extending eventually consistent cloud
databases for enforcing numeric invariants. In 34th
IEEE Symposium on Reliable Distributed Systems,
SRDS 2015, Montreal, QC, Canada, September 28 -
October 1, 2015 (2015), pp. 31–36.

[5] Basho. Riak. http://basho.com/riak/, 2014. Accessed
Fev/2016.

[6] Corbett, J. C., Dean, J., Epstein, M., Fikes, A.,
Frost, C., Furman, J. J., Ghemawat, S.,
Gubarev, A., Heiser, C., Hochschild, P., Hsieh,
W., Kanthak, S., Kogan, E., Li, H., Lloyd, A.,

Melnik, S., Mwaura, D., Nagle, D., Quinlan, S.,
Rao, R., Rolig, L., Saito, Y., Szymaniak, M.,
Taylor, C., Wang, R., and Woodford, D.
Spanner: Google’s globally-distributed database. In
Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation
(Berkeley, CA, USA, 2012), OSDI’12, USENIX
Association, pp. 251–264.

[7] Gotsman, A., Yang, H., Ferreira, C.,
Najafzadeh, M., and Shapiro, M. ’cause i’m strong
enough: Reasoning about consistency choices in
distributed systems. In Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (New York, NY, USA, 2016),
POPL 2016, ACM, pp. 371–384.

[8] Li, C., Porto, D., Clement, A., Gehrke, J.,
Preguiça, N., and Rodrigues, R. Making
geo-replicated systems fast as possible, consistent
when necessary. In Proceedings of the 10th USENIX
Conference on Operating Systems Design and
Implementation (Berkeley, CA, USA, 2012), OSDI’12,
USENIX Association, pp. 265–278.

[9] Roy, S., Kot, L., Bender, G., Ding, B., Hojjat,
H., Koch, C., Foster, N., and Gehrke, J. The
homeostasis protocol: Avoiding transaction
coordination through program analysis. In Proceedings
of the 2015 ACM SIGMOD International Conference
on Management of Data (New York, NY, USA, 2015),
SIGMOD ’15, ACM, pp. 1311–1326.

[10] Shapiro, M., Preguiça, N., Baquero, C., and
Zawirski, M. Conflict-free replicated data types. In
Proceedings of the 13th International Symposium on
Stabilization, Safety, and Security of Distributed
Systems (SSS) (Grenoble, France, Oct. 2011),
X. Défago, F. Petit, and V. Villain, Eds., vol. 6976 of
Lecture Notes on Computer Science, Springer,
pp. 386–400.

[11] Zawirski, M., Preguiça, N., Duarte, S.,
Bieniusa, A., Balegas, V., and Shapiro, M. Write
fast, read in the past: Causal consistency for
client-side applications. In Proceedings of the 16th
Annual Middleware Conference (New York, NY, USA,
2015), Middleware ’15, ACM, pp. 75–87.

[12] Zhang, I., Sharma, N. K., Szekeres, A.,
Krishnamurthy, A., and Ports, D. R. K. Building
consistent transactions with inconsistent replication.
In Proceedings of the 25th Symposium on Operating
Systems Principles, SOSP 2015, Monterey, CA, USA,
October 4-7, 2015 (2015), pp. 263–278.

http://basho.com/riak/

	Introduction
	Running example
	Better safe than sorry
	Adding missing elements
	Ensuring that elements are removed

	Tools for programming Weak Consistency
	Final Remarks
	References

