
∆-CRDTs: Making δ-CRDTs Delta-Based

Albert van der Linde
a.linde@campus.fct.unl.pt

João Leitão
jc.leitao@fct.unl.pt
NOVA LINCS, DI, FCT,

Universidade NOVA de Lisboa

Nuno Preguiça
nuno.preguica@fct.unl.pt

ABSTRACT
Replication is a key technique for providing both fault tol-
erance and availability in distributed systems. However,
managing replicated state, and ensuring that these repli-
cas remain consistent, is a non trivial task, in particular
in scenarios where replicas can reside on the client-side,
as clients might have unreliable communication channels
and hence, exhibit highly dynamic communication patterns.
One way to simplify this task is to resort to CRDTs, which
are data types that enable replication and operation over
replicas with no coordination, ensuring eventual state con-
vergence when these replicas are synchronized. However,
when the communication patters, and therefore synchro-
nization patterns, are highly dynamic, existing designs of
CRDTs might incur in excessive communication overhead.
To address those scenarios, in this paper we propose a new
design for CRDTs which we call ∆-CRDT, and experimen-
tally show that under dynamic communication patters, this
novel design achieves better network utilization than exist-
ing alternatives.

CCS Concepts
•Computer systems organization → Distributed archi-
tectures;

Keywords
CRDT, Replication, Weak Consistency

1. INTRODUCTION AND CONTEXT
Web applications running in cloud infrastructures often

use geo-replication for providing high availability and low
latency to clients. To be able to continue operating during
network partitions, these systems often adopt weakly con-
sistent data replication protocols [2]. Such protocols allow
replicas to be modified concurrently, requiring some recon-
ciliation mechanism to merge these concurrent updates.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PaPOC’16, April 18-21 2016, London, United Kingdom
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4296-4/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2911151.2911163

CRDTs [5] have been proposed as a principled approach
for providing convergence of general purpose data types.
CRDTs come in two main flavors. State-based CRDTs syn-
chronize by having replicas exchange their full local state
(including metadata). This is inefficient when the size of
these data objects grow significantly (for instance, in a large
Set, the full Set needs to be propagated whenever a single
element is added). The second flavor of CRDTs is called
Operation-based CRDTs, where instead of exchanging the
full state, replicas only propagate among them the opera-
tions that mutate their state. In this case, operations have to
be propagated respecting the causality of operations, which
not only introduces additional overhead (to keep track of
causality) but also fits poorly in scenarios where there are
large number of replicas, and where communication patterns
among these replicas are highly dynamic, for instance, due
to poor connectivity among these replicas.

A recent alternative, named δ-CRDTs [1], has been pro-
posed as a middle ground between the two approaches. δ-
CRDTs assumes that communication is mostly pairwise,
with each replica maintaining a communication buffer for
each of its peers where it stores the operations that have
not been propagated (and acknowledged) to the remote peer.
These buffers are used to compress multiple operations into
a single delta, and enforce FIFO communication semantics
between each pair of replicas. Whenever a new synchro-
nization path is established between two replicas, the whole
state of both replicas has to be synchronized by resorting
to a mechanism similar to those employed in State-based
CRDTs. Thus, this approach works well, although only in
settings with continuous and static synchronization patterns
among replicas.

In this paper, we introduce an extension to δ-CRDTs that
we name ∆-CRDTs. ∆-CRDTs were specially designed to
support dynamic communication patterns among a poten-
tially large number of replicas, and removes the assumption
that pairs of replicas are continuously communicating to syn-
chronize their state. Additionally, ∆-CRDTs do not resort
to specialized pairwise communication buffers, minimizing
the space overhead imposed over each individual replica.
Instead, we use the CRDT internal metadata to compute
the minimal Delta that needs to be propagated to a remote
replica, based on a causal context (usually, a vector clock)
that replicas exchange1. Due to this, ∆-CRDTs are well
suited to be used in decentralized dissemination protocols,
such as gossip protocols [4]. To achieve its properties, when

1Riak support for big sets uses a similar idea for efficiently
identifying removed elements [3].

Algorithm 1: ∆-CRDT replication

upon onVersionVector(vv, replica) do
∆←− getDelta(vv)
if ∆.size() > 0

replica.send(∆)
optionally do (push model)

if vv after self.versionVector
replica.send(self.versionVector)

upon delta(∆) do
self.state.applyDelta(∆)
self.versionVector.update(∆)

periodically do (pull model)
r ←− randomReplica()
r.send(self.versionVector)

on local operation do (push model)
r ←− randomReplica()
r.send(self.versionVector)

compared to optimized δ-CRDTs, ∆-CRDTs needs to tem-
porarily maintain additional metadata (tombstones). How-
ever, this metadata can be garbage collected locally at any
time, at the price of being unable to synchronize by send-
ing only a delta when the garbage-collected information is
needed for computing the delta. If this happens, the full
state needs to be exchanged (as it is always the case when
starting a new connection in δ-CRDTs).

We have run a set of preliminary experiments, using a
web-based framework, where we compare the performance
of our ∆-CRDTs with that of State-based and Operation-
based CRDTs, and have observed that our approach enables
a better network usage.

2. ∆-CRDTS
∆-CRDTs are replicated by propagating a delta (∆) of

the current state that is missing in a particular replica. To
compute the ∆, a getDelta function is called with the causal
context of the replica which initiated the communication
(i.e., which requires missing updates). This causal context
can be sent by a requesting replica (pull model) or, when
local operations are performed, sent to other replicas (push
model)2. Algorithm 1 shows how a simple replication pro-
tocol can be created by leveraging ∆-CRDTs. A replica
receives a causal context (version vector) from a replica and
computes a ∆ that is to be shipped back. A replica can re-
ceive a causal context (version vector) from a replica where
there is no is newer than relationship between the received
and its own context (i.e., the relationship is somehow bidi-
rectional). This means that both replicas have executed
operations (concurrently) that the other has not yet seen,
and thus both a ∆ and a causal context have to be shipped
(as to ensure the other replica also computes and send a ∆
back to that node).

To create ∆-CRDTs, the following methods have to be
implemented: a delta function must be implemented to be
able to compute a ∆ from a given point in time (i.e., the

2The distinction between pull and push can be found in [4]

causal history, typically in the form of a version vector); a
applyDelta function must be implemented which applies a
given delta to the current state. For some data types, such
functions might require to store significant amounts of meta-
data. Hence these functions should be carefully crafted to
avoid such pitfalls.

In the particular case of container like data types, such as
Sets and Maps, CRDTs typically associate a unique times-
tamp to each data-item. To avoid concurrent add-remove
anomalies, typically these data-types use a remove-set of
unique timestamps, which are called tombstones. In our
∆-CRDTs we use as unique timestamp pairs of replicaID
and operationNumber. This ensures that each existing data-
items and tombstones can be related to any given version
vector (as to be before or after that point).

Notice that causality is maintained by the same principle
associated with shipping the whole state when using State-
based CRDTs. getDelta always returns the complete ∆ and
thus all missing operations on the other replica are sent in a
single message. A ∆ is always added to the local state in a
single execution step (i.e., no other methods should be able
to access the internal data-structures), and thus causality is
implicitly maintained. Note however, that when two replicas
are synchronized, or when a replica receives a causal context
that is in its future, the generated ∆ will be empty.

To be able to compute the delta from a given causal con-
text, ∆-CRDTs need to maintain metadata about deleted
elements (note that δ-CRDTs also need to maintain such
information in pairwise communication buffers). In order to
keep the amount of wasted space small we remove old meta-
data periodically (i.e., we provide a mechanism to garbage
collect old tombstones). A garbageCollection function is
added which removes old metadata associated with all op-
erations that happened before a given point in time (also
denoted by a version vector).

When garbage collection occurs, the previously described
applyDelta function has to be able to still infer if some por-
tion of the current local state is outdated (i.e., removed data-
items whose’s tombstones have been garbage collected). The
getDelta function is adapted to handle the (typically rare)
case where the local replica’s garbage collection point is fur-
ther ahead in time than the sender’s causal context. In this
case, a ∆-CRDT falls back to a State-based CRDT merge
procedure, where the whole state, including the causal con-
text of the last garbage collection step, have to be shipped
and integrated by the remote replica.

The main drawback of using ∆-CRDTs is expected to be
an increase in latency for replicas to receive operations. Typ-
ically State-based CRDTs and Operations-based CRDTs use
a push model to propagate local changes to a replica. Though
these data-types are able to immediately send the changes,
∆-CRDTs need an additional communication step between
replicas. Typically, a version vector is first sent, and then a
delta is sent back which can be locally applied. A version
vector can also be piggy-backed along with the delta, as to
ensure the initiating replica also ships any locally applied
changes that the remote replica has not yet received. When
using ∆-CRDTs with stable communication patterns, the
additional communication step is paid only when establish-
ing the connection.

When used in a scenario with dynamic communication
patterns and compared to δ-CRDTs, ∆-CRDTs have the
following advantages: (1) ∆-CRDTs do not require each

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

4 6 8 10 12 14 16 18 20 22 24

Tr
an

sm
itt

ed
 d

at
a

be
tw

ee
n

cli
en

ts
 (b

yt
es

)

Time
 (seconds)

State
Op

Delta

Figure 1: Communication cost, results for 8 replicas sharing an Observe-Remove Set. Each replica issues an
operation every 500ms. The workload is composed of 70% inserts and 30% removes.

replica to maintain a buffer for each of its connections; (2)
by using the information exchanged in the vector clocks, a
replica will only send the minimal Delta needed by the re-
mote replica, instead of sending all the information stored
in the Delta (that might have arrived to the remote replica
through a different communication path).

3. PRELIMINARY RESULTS
To have an initial feel for the feasibility of ∆-CRDTs

in comparison to State-based CRDTs or Operation-based
CRDTs in a real setting we compare the usage of each type
of CRDT in a peer-to-peer setting. We implemented ∆-
CRDTs, State-based CRDTs, and Operation-based CRDTs,
namely an Observe-Remove Set, extending an existing browser-
based peer-to-peer framework which has support for State-
based CRDT and Operation-based CRDT replication.

We run multiple nodes (each node owns a replica of a sin-
gle replicated set) in a peer-to-peer setting. The interactions
between active peers is dynamic, i.e., replicas communicate
with a random sub-set of all existing replicas at each syn-
chronization step.

3.1 Implementation
Communication between replicas happens every T sec-

onds. In a synchronization step, a random subset of the
currently connected neighbours are selected by a peer. At
this point, using ∆-CRDTs, the causal context of the ini-
tiating replica is sent to those peers (hence, we use a pull
communication model). In contrast, when using State-based
CRDTs the whole state is shipped to the randomly selected
peers.

When using Operation-based CRDTs the version vector
is also shipped. This happens because in our experimental
setting there is no continuous flow of messages between pairs
of nodes (i.e., the communication patterns change at each
synchronization step). The alternative would require each
replica in the system to maintain information about all op-

erations which have previously been sent and acknowledged.
The remote replica will use this vector clock to send back
missing operations (and its own version vector).

Note that while we use a push model when propagating
State-based CRDTs, a pull model is employed for Operation-
based CRDTs and ∆-CRDTs.

3.2 Experimental Setup
We run 8 clients in a browser-based peer-to-peer frame-

work where each client continuously issues operations over
a replicated CRDT Observe-Remove Set. Each client was
ran in its own Google Chrome instance, on a local machine
(MacBook Pro Retina, 16GB RAM). All reported results
are the mean result of three independent runs.

We compare the sizes of messages sent between clients
when using ∆-CRDTs, State-based CRDTs, and Operation-
based CRDTs. The Set is updated, by each peer, twice per
second. Each peer, per update, has a 30 % change to remove
an existing data-item and 70 % change to add a new data-
item (a string with 14 characters, with 2 bytes per char
resulting in 28 bytes per data-item). Each peer contacts 2
randomly selected peers, every 5 seconds, as to begin state
reconciliation between them (as discussed previously).

3.3 Results
Figure 1 reports the obtained results showing the size,

in bytes, of all messages exchanged between replicas, with
a sampling interval of one second (object related messages
only, including state, operations, ∆s, and version vectors
when applicable). As expected, State-based CRDTs have
an always growing load on the network. As more operations
are executed more state has to be exchanged between repli-
cas. The currently implemented Operation-based CRDTs
are not optimized for the employed communication model
and thus incur an initial load penalty. As only operations are
sent over the network (along with version vectors), eventu-
ally the network load becomes lower than state propagation.

∆-CRDTs propagate less data over the network as, when
the total amount of applied operations increases, what is
shipped between clients is always a ∆ where this ∆ is much
smaller that the whole state of the object.

4. CONCLUSION AND FUTURE WORK
The results that we have reported show that, in a scenario

with highly dynamic communication patterns, ∆-CRDTs
clearly outperform, from the standpoint of network usage,
the competing alternative (we are currently updating our
browser-based peer-to-peer framework to make use of ∆-
CRDTs due to this). We intend to further implement and
evaluate ∆-CRDTs in a distributed setting (scenarios with
geo-replication for instance). We will also continue working
on improving the current implementation of ∆-CRDTs, as
the current implementations have unbounded growth on the
version vector size (i.e., it is bounded by the amount of repli-
cas in the system which can grow significantly when pushing
replicas to the client side).

Acknowledgments
This research is supported in part by EU FP7 SyncFree
project (609551) and NOVA LINCS (UID/CEC/04516/2013).

5. REFERENCES
[1] P. S. Almeida, A. Shoker, and C. Baquero. Efficient

state-based crdts by delta-mutation. In A. Bouajjani
and H. Fauconnier, editors, Networked Systems - Third
International Conference, NETYS 2015, Agadir,
Morocco, May 13-15, 2015, Revised Selected Papers,
volume 9466 of Lecture Notes in Computer Science,
pages 62–76. Springer, 2015.

[2] E. Brewer. Towards robust distributed systems
(abstract). In ACM PODC, page 7, 2000.

[3] R. Brown. Riak support for big sets (private
communication), 2015.

[4] J. Leitão. Topology Management for Unstructured
Overlay Networks. PhD thesis, Technical University of
Lisbon, Sept. 2012.

[5] M. Shapiro, N. M. Preguiça, C. Baquero, and
M. Zawirski. Conflict-free replicated data types. In
X. Défago, F. Petit, and V. Villain, editors,
Stabilization, Safety, and Security of Distributed
Systems - 13th International Symposium, SSS 2011,
Grenoble, France, October 10-12, 2011. Proceedings,
volume 6976 of Lecture Notes in Computer Science,
pages 386–400. Springer, 2011.

