
A Study of CRDTs that do Computations

David Navalho Sérgio Duarte Nuno Preguiça
NOVA LINCS, FCT, Universidade NOVA de Lisboa

Abstract
A CRDT is a data type specially designed to allow instances
to be replicated and modified without coordination, while
providing an automatic mechanism to merge concurrent
updates that guarantees eventual consistency. In this paper
we present a brief study of computational CRDTs, a class
of CRDTs whose state is the result of a computation over
the executed updates. We propose three generic designs that
reduce the amount of information that each replica maintains
and propagates for synchronizations. For each of the designs,
we discuss the properties that the function being computed
needs to satisfy.

1. Introduction
Cloud infrastructures, composed of multiple data centers
spread across the globe, have become central for the deploy-
ment of novel Internet services, from social networks to busi-
ness applications. A large number of cloud databases have
been developed in recent years, providing different level of
consistency, from strong [5] to eventual consistency [2, 6, 7].

In this paper we focus on cloud databases that provide
eventual consistency only. When using an eventually con-
sistent database, applications can be made highly available
by replicating the application code and data in multiple data
centers and allowing a user to access any of these data centers.
Low latency is achieved by routing the client requests to the
closest data center and executing the request in the data center
without coordinating with other data centers.

In such settings, concurrent updates may be executed in
different replicas. Systems must provide a mechanism to han-
dle concurrent updates and enforce eventual convergence of
all replicas. CRDTs [10] have been proposed as a technique
for helping application programmers to deal with concurrent
updates. They provide eventual consistency with well defined
semantics and thus make these systems more amenable to
programmers. CRDTs have been adopted as a key feature

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PaPoC’15, April 21–24, 2015, Bordeaux, France.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3537-9/15/04. . . $15.00.
http://dx.doi.org/10.1145/2745947.2745948

in a leading cloud database, Riak, and are used in multi-
ple large-scale systems, such as SoundCloud and Twitter’s
Summingbird[3].

Most CRDTs proposed in literature are replicated forms
of collections. In such data types, a replica needs to maintain
all data elements in all replicas. Thus, a model where every
data replica maintains the same state and where all updates
are propagated to all replicas is natural.

In some cases, applications are not interested in actual
elements or updates, but instead on the result of a computation
over them. We call computational CRDTs to the class of
CRDTs whose state is the result of a computation over
the executed updates. For example, a counter CRDT [10]
counts the number of times an increment operation has
been executed. In such cases, each replica does not need to
maintain every individual update, but can instead maintain for
each replica an integer that counts the number of increments
executed at that replica. For synchronizing replicas, it also
suffices to propagate an integer that summarizes a set of
updates.

In the remaining of this paper we present a brief study
of the properties of computational CRDTs. In particular, we
propose three generic designs that minimize the data that
needs to be maintained in each replica and that needs to be
propagated for synchronizing replicas. We study the prop-
erties of functions suitable to each of the designs. Notably,
our last design departs from the strict model of state-based
CRDTs by the fact that the state of each replica does not need
to converge, although the result of all queries executed in
every replica is the same.

1.1 Related work
Aggregation techniques have been studied extensively in
different settings, such as as sensor networks [11]. Our work
can build on the proposed algorithms for creating replicated
data types that perform computations in a cloud database.

The techniques used to model CRDTs have been used
to express a distributed deterministic dataflow model for
concurrent communication between processes [8]. They have
also been used to provide algebraic structures for integration
between batch and stream processing of aggregations [3]
and to support incremental computations [9]. Unlike these
works, this paper studies CRDTs that can be integrated in
a cloud database as an elementary abstraction to perform
computations without requiring additional support from the
system.

The problem of optimizing information propagated for
synchronizing replicas has been studied by Almeida et. al
[1], who have proposed a principled approach to merge the
changes produced by multiple operations and use this infor-
mation to update a remote replica. In our work, the infor-
mation propagated to synchronize replicas also summarizes
multiple updates. However, all information is handled in the
context of the CRDT. Additionally, our last design departs
from the strict state-based CRDT model by allowing replicas
to maintain different state.

2. System model
We adopt the CRDT state-based model [10], where replicas
synchronize in a peer-to-peer way, by sending their state
to other replicas, where the received state is merged with
the current state. A CRDT has an interface that includes
update operations that modify the state of the object. In
our presentation, we define an event as an invocation of an
update operation. For simplicity, we consider a single read-
only operation that returns the state of the object. A CRDT
includes an additional operation, merge, to merge a copy of a
remote replica with the current replica state. In one design,
we extend this model to allow a replica to send only a subset
of its state to other replicas.

For fault-tolerance, we assume a crash-recovery model,
where a replica that fails recovers with its state intact. In a
typical cloud deployment, each data center can be seen as a
single replica, although internally an object is replicated in a
quorum of replicas.

3. Design 1: Incremental Computations
Our first design considers computations that can be done
incrementally. In this case, computing the function over two
disjoint sets of events and combining the results is equal
to computing the function over the union of the two sets.
Formally, a computation is incremental if there is a function
fun, such that:

Ffun(E1 ∪ E2, hbE1∪E2
) =

fun(Ffun(E1, hbE1),Ffun(E2, hbE2))

where E1 and E2 are disjoint sets of events (operation
invocations), hbE is a partial causality order on E1, and
Ffun is the function that defines the state of a CRDT that
computes fun over the observed events (following loosely
the formalization proposed by Burckhardt et. al.[4]).

For example, a counter with a single update operation for
increment, inc, can be defined as follows:

F+
ctr(E, hb) = | {e ∈ E : e = inc} |

F+
ctr(E1 ∪ E2, hb) = F+

ctr(E1, hb) + F+
ctr(E2, hb)

For these computations, Figure 1 presents a generic
CRDT design that is parameterized by the following ele-

1 For simplicity of presentation, we drop the subscripts of hb in the rest of
the paper.

ments: (i) V0, the initial state associated with a replica;
(ii) fun(o), the value of the computation for a single opera-
tion o; (iii) fun(s1, s2), the function to compose two partial
results; and (iv) funmax(v1, v2), that returns the latest of two
values.

In this design, each replica computes its contribution to
the final value of the CRDT independently. Each replica
maintains a map for the contributions of each replica. When
executing an update operation, a replica updates its contribu-
tion by using function fun to combine the previous computed
contribution and the contribution of the new operation (with
s[i 7→ fun

(
s[i], fun(op)

)
] representing the replacement in

s of the value of entry i by the new computed value). When
merging two replicas, for the partial result of each replica,
the most recently computed result must be kept, which is
returned by funmax. If the values are monotonic, it is imme-
diate to know what is the most recent version. Otherwise, it
might be necessary to maintain this information explicitly.
The value of a replica is computed by applying the function
fun to the contributions of all replicas.

As an example, a positive-negative counter, with an incre-
ment and a decrement operations can be defined by making:

V0 = (0, 0)
fun(inc) = (1, 0)
fun(dec) = (0, 1)

fun((p,m), (p′,m′)) = (p+ p′,m+m′)
funmax((p,m), (p′,m′)) = (max(p, p′),max(m,m′))

A CRDT that computes the average of values added to
an object, which could be used for example to present the
average rating in a web application, can be defined by making:

V0 = (0, 0)
fun(add(x)) = (x, 1)

fun((s, c), (s′, c′)) = (s+ s′, c+ c′)
funmax((s, c), (s′, c′)) = (s, c), iff c > c′

(s′, c′), iff c ≤ c′

The average is computed as s/c, with (s, c) the result of
the read defined in the generic CRDT design.

Other CRDTs can be defined using a similar approach,
including a CRDT that computes a histogram.

4. Design 2: Incremental Idempotent
Computations

In some cases, the computation to be performed besides being
incremental is also idempotent. In this case, computing the
function over two (potentially overlapping) sets of events
and combining the results is equal to computing the function
over the union of the two sets. Formally, a computation is
incremental and idempotent if there is a function fun, such
that for any sets of events E1 and E2 we have:

Ffun(E1 ∪ E2, hb) = fun(Ffun(E1, hb),Ffun(E2, hb))

Replica state Σ = I → V
Initial state σ0

i = V0

Update op at replica i opi
(
s
)

= s[i 7→ fun
(
s[i], fun(op)

)
]

Read at replica i opi
(
s
)

= fun
(
s[i], ∀i

)
Merge replica states deliver

(
s, s′

)
= s[i 7→ funmax

(
s[i], s′[i]

)
],∀i

Figure 1: Generic CRDT for incremental computation.

Replica state Σ = V
Initial state σ0

i = V0

Update op at replica i opi
(
s
)

= fun
(
s, fun(op)

)
Read at replica i opi

(
s
)

= s
Merge replica states deliver

(
s, s′

)
= fun(s, s′)

Figure 2: Generic CRDT for incremental idempotent computation.

For these computations, Figure 2 presents a generic CRDT
design. In this case, it is possible to keep in each replica only
the computed result that is modified when executing update
and merge operations.

A computation that obeys these conditions is computing
the maximum of the values added to an object, which could be
used in a game application for keeping the highest score. This
data type could be implemented, keeping a name associated
with the highest score, with names totally ordered, by making:

V0 = (−,minimum value)
fun(add(n, v)) = (n, v)

fun((n, v), (n′, v′)) = (n, v), iff v>v′ ∨ (v=v′ ∧ n>n′)
(n′, v′), otherwise

A generalization of the maximum CRDT is a top-K CRDT
that keeps the K players with highest scores, which can be
used to maintain a leaderboard in a game application. This
CRDT can be implemented by making:

V0 = {}
fun(add(n, v)) = {(n, v)}

fun(s, s′) = maxk
(
{(n, v) ∈ (s ∪ s′) :

6 ∃(n, v1) ∈ (s ∪ s′) : v1 > v}
)

with maxk(s) a function that returns the k largest elements
(n, v) ∈ s, with the elements ordered using the total order
defined previously.

In general, this approach can be used to create CRDTs that
compute a filter over the values added to the object, for which
an element that does not match the filter at some moment will
not match the filter at a later moment.

5. Design 3: Partially Incremental
Computations

We now consider computations that are only partially incre-
mental, in the sense that some updates observe the incre-
mental property previously defined, while others do not. An
example of such an object is a top-K object where an element
can be deleted. In such cases, a value that does not belong to

the top-K elements may later become part of the top, after a
top element is deleted.

To address this case, a possible approach is to use a Set
CRDT to maintain the set of elements that have not been
deleted. In this case, all replicas maintain the complete set,
and all updates need to be propagated to all replicas. The
top-K can be computed locally on the value of each replica.

In Figure 3 we present an alternative approach, in which
each replica maintains all operations locally executed, and
each replica only propagates to other replicas the operations
that might affect the computed result. Each replica maintains
a set of operations and the results of the computation per-
formed at other sites — for simplicity of notation, we assume
that the result of the computation is a subset of operations.
An update operation updates the local set of operations. A
read operation makes the computation considering the local
operations and the results of the computation at the other
replicas. For synchronizing replicas, a replica sends the re-
sults of the computations to all replicas and the subset of
operations known locally that can affect the computed result
at other replicas (in the top-k example, a delete of an element
that belongs to the top elements). When receiving the state
from a remote replica, the local replica is updated by merging
the local set of operations with the remote operations that
may affect the result of the computation, and by registering
the most recent version of the computation for each site.

A top-k replicated data type that supports an add
(
n, v

)
and del

(
n
)

operations can be defined as follows:

V0 = {}
fun(s) = maxk

(
{o ∈ s : o = add(n, v)∧

(6 ∃o′ ∈ s : o ≺ o′ ∧ o′ = del(n))}
)

with maxk(s) a function that returns the k add
(
n, v

)
opera-

tions with largest values (n, v) for different values of n and
elements ordered using the total order defined previously.
funmax can be defined by assigning a monotonic integer to
the result computed in each replica, and using this integer to
decide which value is the most recent.

Replica state Σ =
(
P(op), I → V

)
Initial state σ0

i =
(
{}, i→ V0

)
Update op at replica i opi

(
(s,m)

)
=

(
s ∪ {op},m

)
Read at replica i opi

(
(s,m)

)
= fun

(
s
⋃
∀j
m[j]

)
State to send from replica i diff

(
s,m

)
= ({o ∈ s : fun

(
o
⋃
∀j
m[j]

)
6= fun

(⋃
∀j
m[j]

)
},m[i→ fun(s

⋃
∀j
m[j])]

)
Merge replica states deliver

(
(s,m), (s′,m′)

)
=

(
s ∪ s′,m[j 7→ funmax(m[j],m′[j])]∀j

)
Figure 3: Generic replicated data type for partially incremental computation.

This design enforces eventual consistency, assuming that
replicas continue synchronizing until they reach an equiva-
lent state, i.e., a state where read operations return the same
result in every replica. However, this may not happen af-
ter the first synchronization step. For example, consider a
top-1 object replicated in two sites: Site 1 executed opera-
tions {add(b, 15), add(a, 10)} and site 2 executed operations
{add(b, 16), add(c, 12)}. The two sites synchronize, with the
top-1 element, (b, 16), being known at both replicas. After
this, del(b) executes at site 1, promoting (a, 10) to the top
at site 1. After the propagation of del(b) to site 2, (c, 12) is
promoted to the top at site 2. After the next synchronization
step, the top at site 1 (a, 10) is replaced by the same value as
in site 2 (c, 12).

6. Final remarks
In this paper we have proposed three generic designs for
replicated data types that perform a computation on the
operations executed by users. These designs can be used in
a system that maintains CRDT replicas at multiple sites and
synchronizes them using a state-based model. We present the
properties that computations must obey in order to use each
of the designs. These designs try to minimize the information
that each replica has to maintain and propagate to other
replicas for synchronization.

The last proposed design departs from the strict CRDT
state-based model, while still enforcing eventual consistency.
We are currently formalizing the new model and studying
the relations between replicated data types implemented
using this design and state-based CRDTs that implement
the same functionality. In the future, we intend to study how
to integrate these designs in an eventually consistent cloud
database, such as Riak.

Acknowledgments
This research is supported in part by FCT scholarship SFRH
/ BD / 65070 / 2009, FCT projects PTDC/ EEI-SCR/ 1837/
2012 and PEst-OE/ EEI/ UI0527/ 2014 and EU FP7 SyncFree
project (609551).

References
[1] P. S. Almeida, A. Shoker, and C. Baquero. Efficient state-based

crdts by delta-mutation. In Proc. of the Third International

Conference on Networked Systems (NETYS) (to appear), May
2015.

[2] S. Almeida, J. a. Leitão, and L. Rodrigues. Chainreaction: A
causal+ consistent datastore based on chain replication. In Proc.
of the 8th ACM European Conference on Computer Systems,
EuroSys ’13, pages 85–98, 2013. ACM.

[3] O. Boykin, S. Ritchie, I. O’Connell, and J. Lin. Summingbird:
A framework for integrating batch and online mapreduce
computations. Proc. VLDB Endow., 7(13):1441–1451, Aug.
2014.

[4] S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. Repli-
cated data types: Specification, verification, optimality. In Proc.
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’14, pages 271–284, 2014.
ACM.

[5] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, et. al. Span-
ner: Google’s globally-distributed database. In Proc. of the
10th USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, pages 251–264, 2012. USENIX
Association.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vo-
gels. Dynamo: Amazon’s highly available key-value store. In
Proc. of Twenty-first ACM SIGOPS Symposium on Operating
Systems Principles, SOSP ’07, pages 205–220, 2007. ACM.

[7] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.
Don’t settle for eventual: Scalable causal consistency for wide-
area storage with cops. In Proc. of the Twenty-Third ACM
Symposium on Operating Systems Principles, SOSP ’11, pages
401–416, 2011. ACM.

[8] C. Meiklejohn and P. Van Roy. Lasp: A Language for Dis-
tributed, Eventually Consistent Computations with CRDTs. In
Proc. of the Workshop on Principles and Practice of Consis-
tency for Distributed Data, Apr. 2015.

[9] D. Navalho, S. Duarte, N. Preguiça, and M. Shapiro. Incre-
mental stream processing using computational conflict-free
replicated data types. In Proc. of the 3rd International Work-
shop on Cloud Data and Platforms, CloudDP ’13, pages 31–36,
2013. ACM.

[10] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski.
Conflict-free replicated data types. In Proc. of the 13th In-
ternational Conference on Stabilization, Safety, and Security of
Distributed Systems, SSS’11, pages 386–400, 2011. Springer-
Verlag.

[11] J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network
survey. Comput. Netw., 52(12):2292–2330, Aug. 2008.

	Introduction
	Related work

	System model
	Design 1: Incremental Computations
	Design 2: Incremental Idempotent Computations
	Design 3: Partially Incremental Computations
	Final remarks

