
Data Replication on the Cloud/Edge
David Mealha, Nuno Preguiça, Maria Cecília Gomes, João Leitão

NOVA LINCS & DI/FCT/UNL Portugal

d.mealha@campus.fct.unl.pt,{nuno.preguica,mcg,jc.leitao}@fct.unl.pt

ABSTRACT
This work presents a database replication system capitalising on

hybrid cloud/edge infra-structures, which may be used in novel

software architectures like microservices’ applications. The system

aims to reduce the latency perceived by clients performing read and

update operations on a database, by locating replicas on edge nodes

nearer end users. The replicas’ convergence algorithm is based on

eventual consistency and presents a novel solution that combines

Operations Transformation and CRDTs techniques. The system

follows theMongoDB data model and is validated on geographically

disperse Amazon AWS data centers simulating edge nodes.

KEYWORDS
replication middleware, weak consistency, cloud/edge computing

ACM Reference Format:
David Mealha, Nuno Preguiça, Maria Cecília Gomes, João Leitão. 2019.

Data Replication on the Cloud/Edge. In 6th Workshop on Principles and
Practice of Consistency for Distributed Data (PaPoC ’19), March 25, 2019,
Dresden, Germany. ACM, New York, NY, USA, 7 pages. https://doi.org/10.

1145/3301419.3323973

1 INTRODUCTION
The surge of generated data by current and emerging applications,

accessed from an increasing number of fixed and mobile devices,

demand adequate/novel solutions for data management that may

support a timely data access and processing from where it may

be needed [4, 8]. Examples of data intensive applications range

from highly popular web applications prone to peak accesses (like

Facebook or Twitter) or bandwidth intensive applications like video

streaming and gaming, to emerging applications capitalising on

fresh data generated by end devices in the domain of smart cities,

autonomic cars, or smart health.

The current trend is hosting applications’ services and databases

in cloud infrastructures, where the resources are plentiful and can

grow on-demand [1]. Yet these infrastructures may be distant from

the end user or from where fresh data needs to be interpreted,

leading to high response times (latency). Replication can mitigate

this effect by placing the same data on different locations (geo-

replication) closer to clients (e.g. web/mobile clients) and to appli-

cations operating over the data (e.g. smart buildings applications).

Edge infrastructures [2, 14], located closer to the client, can also

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PaPoC ’19, March 25, 2019, Dresden, Germany
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6276-4/19/03. . . $15.00

https://doi.org/10.1145/3301419.3323973

be used to replicate data, leading to hybrid cloud/edge infrastruc-

tures. This has the potential to further improve the latency and

availability for users.

Orthogonally, new software architectures and patterns are being

adopted to improve the applications’ maintenance and scalability.

Microservices [7] is one such example by defining a system/applica-

tion as being composed of loosely coupled small services, each one

managing its own database. Each service may hence scale indepen-

dently taking advantage of the scalability and elasticity properties

of current cloud platforms [1]. The loosely coupled nature and small

size of microservices also make them better candidates to support

the lighter/faster deployment of applications on the emerging hy-

brid cloud/edge infrastructures. Microservices may be migrated or

replicated, eventually along with their databases, to such resource

restricted machines according to the necessities [15].

Problem and Objectives. This paper addresses the problem of

replicating a database (associated with a microservice) in a hybrid

cloud/edge infrastructure, by keeping replicas in both cloud and

edge nodes. The proposed database replication system considers

the hierarchical structure of cloud and edge nodes, where some

machines may be unable to store a large portion of the data. How-

ever, it adopts a Multi-Master replication model, where writes can

be submitted and immediately processed by any replica, and are

later asynchronously propagated to other replicas. The replication

system is validated in the context of a particular microservices ap-

plication within a hybrid cloud/edge infrastructure. The evolution

of the system to a dynamic placement strategy of either full or

partial databases is left for future work.

Contributions. Implementation of a database replication mid-

dleware supporting weak consistency in a large scale distributed

scenario including geo-replicated and edge systems. The replica-

tion middleware is connected to the MongoDB database system,

a popular NoSQL database, and it was evaluated on the Amazon

Web Services (AWS) geo-distributed platform. A novel replicas’ con-

vergence algorithm is presented, which combines the techniques

of Operational Transformation (OT) and CRDTs to implement an

eventual consistency model.

2 RELATEDWORK
Geo-replication aims to provide low latency and high availability

when accessing data in global services, where clients are spread

around the world. A large number of geo-replicated storage sys-

tems have been designed in recent years [5, 6, 10]. Some systems

[5] adopt a strong consistency model, where the system behaves

as if a single replica exists, at the cost of requiring coordination

among replicas to execute update operations. Other systems [6, 10]

adopt a weak consistency model, where an update can be executed

by contacting a single replica. This allows to provide low latency

https://doi.org/10.1145/3301419.3323973
https://doi.org/10.1145/3301419.3323973
https://doi.org/10.1145/3301419.3323973

PaPoC ’19, March 25, 2019, Dresden, Germany David Mealha, Nuno Preguiça, Maria Cecília Gomes, João Leitão

and high availability, but it requires the system to handle concur-

rent updates. Several approaches have been proposed to handle

concurrent updates. The popular last-writer-wins policy handles

concurrent updates by keeping for each data item, the value of the

last update (or the update with the larger timestamp). This approach

leads to lost updates, as a concurrent update with a smaller times-

tamp is overwritten by one with a larger timestamp. In contrast,

operational transformation (OT) [13] and Conflict-free Replicated

Data Types (CRDTs) [12] handle concurrent updates by combining

the effects of concurrent updates for implementing a given con-

currency semantics. In operation transformation, an operation is

transformed in a way that the effect of applying it in a given replica

preserves the original intent and guarantee that replicas converge.

Operation-based CRDTs are defined in a way that all operation

commute, thus guaranteeing that replicas converge independently

of the order operations are executed. To this end, CRDTs internally

store additional metadata.

In this work, unlike geo-replicated storage systems tat internally

implement their replication mechanisms, we propose a middleware

to geo-replicate a database. We adopt a weak consistency model and

handle concurrent update using a mechanism based on OT. How-

ever, we build on ideas used to make CRDT operations commute

for transforming the operations.

3 PROPOSED SOLUTION
The database replication system acknowledges the heterogeneous

nature of an infrastructure composed of cloud and edge nodes, and

their hierarchical structure in terms of capabilities. Cloud nodes

are considered homogeneous and high capacity nodes whose com-

munication is supported by high speed networks. Edge nodes are

typically heterogeneous and globally spread at large numbers, at

the border of the communication network near clients/end devices;

they are underpowered and unable to store large volumes of data;

and cannot/do not rely on high capacity communication networks.

The solution takes advantage of cloud computing properties

in terms of scaling/infinite resources and, at the same time, ex-

plores the possibilities of edge computing, in terms of providing a

large number of resources closer to clients and data sources with

lower latency. The CAP theorem [3] proves that no distributed

system can be available and consistent at the same time, in the

presence of network partitions that are unavoidable in such hybrid

infra-structure. This proposal elects availability in detriment of

consistency and supports replica creation at edge nodes following

an eventual consistency model. This allows better response times

since the replicas do not have to wait for the result of coordination

protocols. Concurrent updates may occur within this consistency

level (weak consistency).

Figure 1 presents a generic architecture of the proposed solution.

The database replication system presents a hierarchical architecture

that maps onto the infrastructure with replicas at cloud and edge

nodes. Every replica in the system is able to accept write operations,

which potentially leads to a higher throughput. To guarantee that

all replicas converge to a coherent state, the operations have to

be disseminated to the other replicas, via Message Queue systems.

However, considering the restricted capacity of edge nodes, the

cloud node is the one responsible for disseminating a new operation

Figure 1: Multiple write replicas in cloud/edge platforms.

to all the replicas in the system. When an edge node receives an

new operation locally, this one is persisted and sent to the cloud

node to be disseminated to the rest of the replicas.

The example in Figure 1 is composed of three database replicas,

each one with its middleware instance to handle replication. There

is a strict separation between cloud and edge replicas, following a

tree-based architecture, where the former acts as the main replica.

Message queues support the replicas’ decoupling since they allow

each replica to be unaware of the existence of other machines/repli-

cas in the system by avoiding any direct communication among

them. New replicas may be independently created near the users

where they are needed the most, and locally accessed on read and

write operations for faster responses. This supports requests with

lower latency and a higher throughput on the number of operations

resulting in the improvement of the clients’ perceived quality of

service (QoS) and quality of experience (QoE).
The middleware receives the operations from the database’s

clients and performs the following tasks: a) verifies the existence
of conflicting operations; b) executes the write operation into the

database; c) adds the operation metadata into the database; and

d) sends the operation to a message queue for replication.

The message queue system provides a durable pipeline between

nodes to push events from one replica to another. The operations

are eventually consumed, depending on how fast the middleware

can process operations and how many are waiting in the queue. In

our system, new operations result from the following cases: i) a
service/client connects to the edge replica and submits a write

operation; ii) a service/client connects to the cloud replica and

submits a write operation. In the first case, the write operation is

processed locally and then sent to the upwards queue. Afterwards,

the message is consumed and processed by the cloud replica and,

finally, disseminated to all replicas through the downwards queue.

The downwards flow is represented by the consumption of the

new operation by all edge replicas. This means that all the replicas

that have not executed the operation will persist it. The second

case behaves exactly as the previous one but, since the operation

is submitted at the cloud level, the middleware only needs to send

the processed operations to the downwards queue. They will be

Data Replication on the Cloud/Edge PaPoC ’19, March 25, 2019, Dresden, Germany

consumed at some point in time by all edge replicas. This approach

provides causal consistency [10] if the client write operation is

processed locally before returning to the client.

3.1 Replication Protocol
The replication protocol presented in this work aims to guaran-

tee that all replicas eventually converge to the same state, while

preserving and merging as many concurrent updates as possible.

Each update is identified with an unique tags based on a realtime

clocks, and when two concurrent updates are conflicting and it is

impossible to preserve the effects of both, we adopt a last write wins
(LWW) policy by keeping the effects of the last update.

To implement this approach we adopt a concurrency control

mechanism that combines ideas from Operational Transformation
(OT) [13] and Conflict-free Replicated Data Types (CRDTs) [12].

3.1.1 Data Model. The replication system is not database agnostic

but depends on a particular data model, namely the MongoDB

data model [11]. Due to its characteristics and common use on

microservices applications, supporting the replication of MongoDB

instances at edge nodes was selected as the first step towards a

more generic replication middleware to be developed in the future.

MongoDB supports the following operations which are also

typically available in relational and NoSQL databases:

INSERT addition of a new object/record into an entity/table/doc-

ument;

UPDATE addition, removal and/or update of specific fields of an

object/record;

REPLACE replacement of an object/record;

DELETE remove of an object/record.

In this work an UPDATE operation is defined as a dictionary of

updated fields and a vector of deleted fields. For instance:

{ "updatedFields" : {
"firstName" : "Johny",
"userName" : "JohnyDoe71" },

"removedFields" : ["lastName"] }

A REPLACE operation is a (full) object to be used to replace the

current one in the collection:

{ "fullDocument" : {
"firstName" : "Johny",
"userName" : "JohnyDoe71" } }

3.1.2 Conflict Detection. The middleware at each node listens to

two types of events, localEvent and receivedEvent. The reception
of a new local event occurs when a service/client requests a write

operation to a database. A received event happens when an oper-

ation is disseminated by another replica. All events are labeled

using the Hybrid Logical Clocks (HLC) algorithm [9]. Thus, when

a new label need to be generated, the current physical clock is

used, unless the current clock is smaller or equal to a previously

generated or received timestamp. In such case, the label will be

equal to the largest timestamp generated or received plus one. HLC

guarantees the happens-before property, making it also possible

to establish a total order of operations even when physical clocks

are not synchronised. This allows to combines the advantages of

physical and logical clocks to find conflicting events in globally

distributed databases.

Algorithm 1 Replication Manager - Variables and Local Event

1: Data:
2: documents: last logical time for each object

3: cache: cached operations for each object

4: upon LocalEvent (operation) do
5: ob ject Id ← operation[ob ject Id]
6: newPhysicalT ime ← дetPhysicalT ime()
7: latestLoдicalT ime ← дetLatestLoдicalT ime(ob ject Id)
8: newLoдicalT ime ← f indMax (latestLoдicalT ime,
9: newPhysicalT ime)
10: if newLogicalTime = latestLogicalTime then
11: newLoдicalT ime ← newLoдicalT ime + 1
12: end if
13: call updateLocalStorage(objectId,newLogicalTime,operation)

14: return { operation, newLogicalTime }

To detect conflicts, the middleware compares the HLC values of

the new operation (either received from a local or external event)

and the HLC value of the last persisted message into the system.

An operation is defined as concurrent when the logical time value

present in a new operation is inferior to the registered time of the

last persisted operation. The protocol stores in memory the previ-

ously executed operations identified by the object id. This permits a

cached snapshot of the database allowing the middleware to merge

any new operation into a coherent state, as if the operations arrived

in a total temporal order.

Algorithm 1 presents the relevant data structures and the lo-
calEvent procedure. The algorithm uses two data structures, doc-
uments and cache. The first one stores the HLC value of the last

persisted operation for each object/record identified by its id. The

second one stores all the operations received for each object/record

in a temporal order (as a system snapshot). The LocalEvent proce-
dure is executed every time a client/service requests an operation

to a database replica. The algorithm retrieves the current physical

time and the last persisted logical time for that object. Then, the

maximum between these values is chosen to be the new logical

value for the operation. In case the new logical value equals the

previous one, the value is incremented so that it can be considered

to be the most recent operation in that machine.

Algorithm 2 shows the pseudocode for the receivedEvent pro-
cedure. In this procedure, the operation is received from another

replica, which means the operation logical time was already ob-

tained in the other machine. Therefore, the last (most recent) logical

time for that object id in the system is compared with the newly

received one. In case the operation logical time is smaller, it means

the operation has occurred in a previous point in time, triggering

the merging process. The new operation object is mutated in order

to preserve all the effects, as if the operations had been received in

a total order. Otherwise, the new operation occurred in a posterior

point in time (compared to the last persisted operation) and those

are the only effects to be seen in the database. Also, the operation

to be added into the cache structure must be the operation before

the merge process, in order to maintain the snapshot that may be

used in the next merging processes.

3.1.3 Conflict Resolution Protocol. The algorithm implementing

the eventual consistencymodel is based on Operational Transforma-

tion (OT) and CRDTs, and it is applied whenever there is a conflict

between twowrite operations, namely INSERT, UPDATE, REPLACE

PaPoC ’19, March 25, 2019, Dresden, Germany David Mealha, Nuno Preguiça, Maria Cecília Gomes, João Leitão

and DELETE. Namely, the middleware performs a merge transfor-

mation in order to combine concurrent updates into a coherent

state. The transformation may occur more than once, depending

on how many operations are conflicting (the amount of operations

with a higher logical value than the newly received). Fundamentally,

the merge has to be executed one by one in an ascending order. As

an example, consider the following two events over the same object

that occur in the listed order:

(1) an Update operation is persisted at replica A (T2)
(2) replica B performs a new Update that has to be propagated

to replica A (T1)
Each UPDATE operation is tagged using logical clocks, namely

T2 and T1. Operation identified as T1 has a logical clock with an

inferior value than the one present at operation T2, i.e. in global

logical terms, operation T1 occurred earlier in time than T2. This

means that the first event at the object has a logical clock superior

than the second event occurring at the same object.

A particular example of operation T2 may be:

{ "updatedFields" : {
"firstName" : "Johny",
"email" : "john.doe@gmail.com" },

"removedFields" : ["lastName"] }

A particular example of operation T1 may be:

{ "updatedFields" : {
"firstName" : "Johny",
"userName" : "JohnyDoe71",
"lastName" : "Doue" },

"removedFields" : ["email"] }

In this case, operation T2 had been applied but in face of op-

eration T1 it has to be merged considering that ideally T1 should

have had occurred first. The result of merging the two operations

applying the LWW policy is the following:

• The "firstName" field is updated by both T1 and T2, and T2

wins. This modification was already applied and so it can be

ignored.

• The "userName" field is present in T1 for update but is nonex-

istent in T2, so it has to updated in the object.

• The "lastName" field is present in T1 for update but it is also

present in T2 as a field to be removed in "removedField".

Since this field was already removed from the object in the

operation T2, and T2 wins wrt T1, this update operation in

T1 is ignored.

• The "email" field is present in T1 for removal in "removed-

Fields" but appeared has an update field in T2, and it has

Algorithm 2 Replication Manager - External Event

1: upon ReceivedEvent (f ullObject) do
2: ob ject Id ← f ullObject [ob ject Id]
3: operation ← f ullObject [operation]
4: opLoдicalT ime ← f ullObject [createdAt]
5: latestLoдicalT ime ← дetLatestLoдicalT ime(ob ject Id)
6: if opLoдicalT ime > latestLoдicalT ime then
7: callupdateLocalStorage(objectId,opLogicalTime,operation)

8: return { operation, opLogicalTime }

9: else
10: r esult ← handlePastOperation(ob ject Id, operation,
11: opLoдicalT ime)
12: callupdateLocalStorage(objectId,opLogicalTime,operation)

13: return { result }

14: end if

Algorithm 3 Replication Manager - Apply All Operations

1: procedure applyAllOperations(listOperations, operation)
2: newOperation ← operation
3: l istOperations ← sor t (l istOperations)
4: index ← 0

5: if newOperation .operationType = DELET E then
6: hasInser t ← f indInser t (l istOperations)
7: if hasInser t , TRU E then
8: return operation

9: end if
10: end if
11: for op ← l istOperations do
12: if op .operationType = U PDAT E then
13: newOperation ← applyUpdate(newOperation, op)
14: end if
15: if op .operationType = REPLACE ∨ op .operationType =

I N SERT then
16: newOperation ←
17: applyReplace(newOperation, op)
18: end if
19: if op .operationType = DELET E then
20: r esult ← applyDelete(newOperation,
21: l istOperations, index)
22: newOperation ← r esult [newOperation]
23: if r esult [hasInser t] then
24: index ← r esult [newIndex]
25: else
26: break
27: end if
28: end if
29: index ← index + 1
30: end for
31: return newOperation

32: end procedure

already been applied to the object. In this case, we select

to preserve the operation of T2 (LWW) meaning that the

"email" field is not removed from the object, and so no oper-

ation has to be done in this case.

The result of the operation merge is that the effective transforma-

tion/update to be applied is simply:

{ "updatedFields" : {
"userName" : "JohnyDoe71" } }

Conflict Resolution Pseudocode. Algorithm 3 presents a high-level

pseudo code of the merging algorithm that is proposed to solve

conflicts. The procedure applyAllOperations is executed every time

a new operation is detected as conflicting. The procedure signature

includes two arguments, the new operation (newOperation) and all

the operations with a higher timestamp (listOperations).
The first assertion made by the procedure is to verify if the new

operation is a DELETE. If affirmative and there is not a single IN-

SERT in the listOperations variable, the merge is stopped and the

DELETE operation is returned to be executed (the protocol only

overrides a DELETE in the presence of later INSERT operations).

Otherwise, a loop is made over all the operations inside listOpera-
tions and, for each operation, a merge transformation is performed.

In the occurrence of a DELETE inside the listOperations, a verifi-
cation is made to check if it contains any subsequent insertions.

If true, the loop index is updated to the INSERT’s index and the

merge process restarts from that point.

The applyUpdate procedure merges an UPDATE operation (liste-
dOperation) with the newly received operation (newOperation). For
instance, considering two concurrent updates, the updatedFields

Data Replication on the Cloud/Edge PaPoC ’19, March 25, 2019, Dresden, Germany

Algorithm 4 Replication Manager - Apply Update

1: procedure applyUpdate(newOperation, listedOperation)

2: newOperationType ← newOperation .operationType
3: if isU pdate(newOperationType) then
4: newOperation ← addUpdatedF ieldsReplace(newOperation,
5: l istedOperation)
6: newOperation ← addRemovedF ieldsReplace(newOperation,
7: l istedOperation)
8: newOperation .operationType ← U PDAT E
9: end if
10: if isReplace(newOperationType) ∨

is Inser t (newOperationType) then
11: newOperation ← addUpdatedF ields(newOperation,
12: l istedOperation)
13: newOperation ← addRemovedF ields(newOperation,
14: l istedOperation)
15: newOperation .operationType ← REPLACE
16: end if
17: return newOperation

18: end procedure

Algorithm 5 Replication Manager - Apply Replace

1: procedure applyReplace(newOperation, listedOperation)

2: newOperationType ← newOperation .operationType
3: if isU pdate(newOperationType) then
4: newOperation .ob ject = l istedOperation .ob ject
5: newOperation = addUpdatedF ields(newOperation,
6: l istedOperation)
7: newOperation .operationType ← REPLACE
8: return newOperation

9: end if
10: if isReplace(newOperationType) ∨

is Inser t (newOperationType) then
11: l istedOperation .operationType ← REPLACE
12: return listedOperation

13: end if
14: return newOperation

15: end procedure

from the listOperation variable is added to the updatedFields of new-
Operation. However, when these fields are added, the same fields

may be present in the removedFields of newOperation, and they

have to be removed from that data structure. The same behaviour

happens when the removedFields values are added, the protocol

must consider that these fields may be present in the updatedFields
of the newOperation. This issue does not happen when merging

with a REPLACE or an INSERT, since these operations do not have

the updatedFields and removedFields structures. Instead, they just

provide a full object that represents the new state. Therefore, the ad-

dition and removal of fields are done over the state object, resulting

in a new object with the effects of the update operation.

The applyReplace procedure is transversal to the merge of RE-

PLACE and INSERT operations, since both operations represent

exactly the same, by providing a full object as a new state. When the

newly received operation is an UPDATE, the transformation con-

sists on adding the non-present updatedFields values to the object.

On the other hand, when we have to merge REPLACE and INSERT

operations, the decision is done by returning the most recent object

(the one already persisted and stored in listedOperation).
At last, the execution of the applyDelete procedure always returns

the DELETE operation, unless there is an INSERT operation with a

higher timestamp. In the occurrence of an insertion, the procedure

returns the newOperation variable with the state object and the

new index from the listOperations. The return of the new index is

necessary in order to force the restart of the merging process from

the INSERT’s operation index.

4 PROTOTYPE AND EVALUATION
This section presents a preliminary evaluation aiming to assess

whether the proposed approach improves the experience of the

client, by evaluating: the latency perceived by clients performing

read and write operations, i.e. if there was an improvement on

the perceived latency at a local edge node; the overhead of the

implemented middleware in the overall system; how scalable is the

proposed solution; and the delay of the write operations propagated

to remote replicas.

4.1 Prototype
Our prototype was implemented as a middleware that replicates

MongoDB databases. An independent MongoDB instance runs in

each cloud and edge locations, and it is augmented with our mid-

dleware that controls the execution of local and remote updates.

Clients connect to our middleware, which acts as a proxy of the

database, implementing the MongoDB interface.

For reliably propagating operations among replicas, our middle-

ware relies on Apache Kafka
1
, which runs on the cloud infrastruc-

ture. Thus, each edge node send and receive updates by connecting

to the cloud infrastructure. For each edge node, there is an ingoing

queue with operations not yet processed by the edge node.

4.2 Test Infrastructure and Architecture
The evaluation considers a setting similar to the one of Figure 1.

The system was deployed in AWS using three distinct locations,

one for the cloud replica and two for the edge nodes: Cloud node –

Dublin; Edge nodes and clients – Frankfurt and Paris.

There are two testing scenario. The first one, Cloud, is the repre-
sentation of what happens nowadays. The application service and

its database reside in cloud data centers. Clients perform accesses

from remote locations. The second case represents the proposed

hybrid cloud/edge solution, where clients are co-located with edge

nodes. Two important factors were considered as pre-requisites

for the evaluation’s conditions. The EC2 machines for the edge

nodes should have a much lower capacity, and this was achieved

by launching a cloud’s representative EC2 with 2vCPU and 4 GB

RAM and the edge’s representative EC2 with 1vCPU and 1GB RAM.

1
https://kafka.apache.org

Algorithm 6 Replication Manager - Apply Delete

1: procedure applyDelete(newOperation, listOperations, currentIndex)

2: newOperation .operationType ← DELET E
3: newIndex ← current Index
4: r esult ← f indInser t (l istOperations)
5: if r esult .hasInser t then
6: newIndex ← r esult .index
7: newOperation .ob ject ← l istOperations[newIndex].ob ject
8: newOperation .operationType ←

l istOperations[newIndex].operationType
9: end if
10: return newOperation, result.hasInsert, newIndex

11: end procedure

https://kafka.apache.org

PaPoC ’19, March 25, 2019, Dresden, Germany David Mealha, Nuno Preguiça, Maria Cecília Gomes, João Leitão

Figure 2: Cloud vs Hybrid write latency.

A loosely coupled synchronisation of clocks between replicas is

guaranteed through Amazon Time Sync Service.2.
The client application sends parallel requests to a microservice,

in order to mock concurrent accesses from different users. The

write operations are either INSERT, UPDATE, REPLACE or DELETE

operations. Each type of write is executed 1/4 of the times of the

write rate. For each read request, the client retrieves a single record

from the database based on a random identifier.

4.3 Results
The following sections compare the results of throughput and la-

tency between the cloud only solution and the hybrid cloud/edge

proposal. The dissemination average time is also presented, which

represents the amount of time it takes for a write operation to be

visible in another replica.

4.3.1 Latency. The first collected metric was the response time per

request, in order to acknowledge if the location of a replica closer

to the end user has any significant improvements.

Our solution shows a decrease of the write latency, when oper-

ations are performed in tests that have up to a maximum of ten

(10) concurrent clients. As shown in Figure 2, the results do not ex-

ceed a single-digit value, in case of few concurrent users. However,

when the machine is overloaded with a high amount of clients, the

middleware does not guarantee acceptable values.

The values for the read operations are shown in Figure 3. In this

type of operations the overhead of the write operations’ propaga-

tion is absent and, consequently, the result is lower/better latency

values perceived by clients. Namely, a replica at an edge node, with

a much lower capacity than the cloud node, can serve requests

faster in the presence of up to twenty (20) concurrent clients.

4.3.2 Throughput. A replica’s throughput, presented in Figure 4,

is an additional metric in our evaluation that shows how many

operations a node can process per time unit, while varying the

write rate. The results highlight how quickly the hybrid solution

reaches its peak performance. Since the latency between the clients

and the server at an edge node is so low, the machine quickly

reaches its limit in terms of its processing capacity. In a nutshell,

the edge node is capable of serving a maximum of one thousand and

two hundred (1200) requests per second. The reason for reaching

2
https://aws.amazon.com/pt/blogs/aws/keeping-time-with-amazon-time-sync-service/

Figure 3: Cloud vs Hybrid read latency.

Figure 4: Cloud vs Hybrid throughput.

this limit so quickly is that the operations arrive faster than the

necessary time to process them totally, since it is only able to satisfy

one request at a time (only one thread per edge node).

4.3.3 Dissemination times. The last metric is the delay between

performing an operation at a node and the time it becomes visible at

the remote nodes. It was defined by measuring how long it takes for

a message originated in Frankfurt (Edge) to arrive at Dublin (Cloud)

and at Paris (Edge). On average, the operations from Frankfurt to

Dublin took over two hundred (200) ms and an additional thirty (30)

ms from Dublin to Paris. This shows that the latency introduced by

our solution is reasonable.

5 CONCLUSIONS AND FUTUREWORK
This work presents a database replication system capitalising hy-

brid cloud/edge infra-structures that may be used in novel software

architectures like applications based on microservices. The system

is similar to a multi-master replication strategy implementing an

eventual consistency model with all replicas accepting read and

write operations. The architecture follows a hierarchical organ-

isation with a master replica responsible for disseminating the

updates received from a particular replica. The replication system

is associated with the MongoDB data model and implements a

novel consistency replication protocol based on Operation Trans-

formation (OT) and Conflict-free Replicated Data Types (CRDTs).

https://aws.amazon.com/pt/blogs/aws/keeping-time-with-amazon-time-sync-service/

Data Replication on the Cloud/Edge PaPoC ’19, March 25, 2019, Dresden, Germany

The proposal was validated in the context of a particular microser-

vices application use case, a sock shop, and the evaluation presents

promising results towards building an automatic database replica-

tion system in the future. To this extent, the next steps consist on

supporting database sharding on edge nodes, defining/implement-

ing a generic middleware capable of supporting diverse databases

and their data models, and supporting dynamic replication to both

full and sharded databases, both at cloud and edge nodes.

Acknowledgments
This work was partially supported by the European Union H2020

LightKone project under grant 732505 (https://www. lightkone.eu/)

and FCT/MCTES grants UID/CEC/04516/2013 and Lisboa-01-0145-

FEDER-032662 /PTDC/CCI-INF/32662/2017.

REFERENCES
[1] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,

Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and

Matei Zaharia. 2010. A View of Cloud Computing. Commun. ACM 53, 4 (April

2010), 50–58. https://doi.org/10.1145/1721654.1721672

[2] Kashif Bilal, Osman Khalid, Aiman Erbad, and Samee U. Khan. 2018. Potentials,

trends, and prospects in edge technologies: Fog, cloudlet, mobile edge, and micro

data centers. Computer Networks 130 (2018), 94 – 120. https://doi.org/10.1016/j.

comnet.2017.10.002

[3] E. Brewer. 2012. CAP twelve years later: How the "rules" have changed. Computer
45, 2 (Feb 2012), 23–29. https://doi.org/10.1109/MC.2012.37

[4] C.L. Philip Chen and Chun-Yang Zhang. 2014. Data-intensive applications,

challenges, techniques and technologies: A survey on Big Data. Information
Sciences 275 (2014), 314 – 347. https://doi.org/10.1016/j.ins.2014.01.015

[5] James C. Corbett and et. al. 2013. Spanner: Google&Rsquo;s Globally Distributed

Database. ACM Trans. Comput. Syst. 31, 3, Article 8 (Aug. 2013), 22 pages. https:

//doi.org/10.1145/2491245

[6] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-value Store.

SIGOPS Oper. Syst. Rev. 41, 6 (Oct. 2007), 205–220. https://doi.org/10.1145/1323293.

1294281

[7] Martin Fowler and James Lewis. 2014. Microservices, a definition of this new

architectural term. martinfowler.com/articles/microservices.html

[8] Martin Kleppmann. 2017. Designing Data-Intensive Applications The Big Ideas
Behind Reliable, Scalable, and Maintainable Systems. O’Reilly.

[9] Sandeep Kulkarni, Murat Demirbas, Deepak Madeppa, Bharadwaj Avva, and

Marcelo Leone. 2014. Logical Physical Clocks and Consistent Snapshots in

Globally Distributed Databases (under submission). (2014). https://cse.buffalo.

edu/tech-reports/2014-04.pdf

[10] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.

2011. Don’T Settle for Eventual: Scalable Causal Consistency for Wide-area

Storage with COPS. In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles (SOSP ’11). ACM, New York, NY, USA, 401–416.

https://doi.org/10.1145/2043556.2043593

[11] MongoDB. 2017. MongoDB Architecture. https://www.mongodb.com/

mongodb-architecture

[12] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011. A
comprehensive study of Convergent and Commutative Replicated Data Types. Re-
search Report RR-7506. Inria – Centre Paris-Rocquencourt ; INRIA. 50 pages.

https://hal.inria.fr/inria-00555588

[13] Chengzheng Sun and Clarence Ellis. 1998. Operational Transformation in Real-

time Group Editors: Issues, Algorithms, and Achievements. In Proceedings of the
1998 ACM Conference on Computer Supported Cooperative Work (CSCW ’98). ACM,

New York, NY, USA, 59–68. https://doi.org/10.1145/289444.289469

[14] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopoulos. 2016.

Challenges and Opportunities in Edge Computing. In 2016 IEEE International Con-
ference on Smart Cloud (SmartCloud). 20–26. https://doi.org/10.1109/SmartCloud.

2016.18

[15] M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan. 2016. Osmotic Computing:

A New Paradigm for Edge/Cloud Integration. IEEE Cloud Computing 3, 6 (Nov

2016), 76–83. https://doi.org/10.1109/MCC.2016.124

https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1016/j.comnet.2017.10.002
https://doi.org/10.1016/j.comnet.2017.10.002
https://doi.org/10.1109/MC.2012.37
https://doi.org/10.1016/j.ins.2014.01.015
https://doi.org/10.1145/2491245
https://doi.org/10.1145/2491245
https://doi.org/10.1145/1323293.1294281
https://doi.org/10.1145/1323293.1294281
martinfowler.com/articles/microservices.html
https://cse.buffalo.edu/tech-reports/2014-04.pdf
https://cse.buffalo.edu/tech-reports/2014-04.pdf
https://doi.org/10.1145/2043556.2043593
https://www.mongodb.com/mongodb-architecture
https://www.mongodb.com/mongodb-architecture
https://hal.inria.fr/inria-00555588
https://doi.org/10.1145/289444.289469
https://doi.org/10.1109/SmartCloud.2016.18
https://doi.org/10.1109/SmartCloud.2016.18
https://doi.org/10.1109/MCC.2016.124

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Solution
	3.1 Replication Protocol

	4 Prototype and Evaluation
	4.1 Prototype
	4.2 Test Infrastructure and Architecture
	4.3 Results

	5 Conclusions and Future Work
	References

