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Abstract
The purpose of this paper is to discuss the limitations im-
posed by introducing fault-tolerance in a partial replication
system which aims to provide causal consistency.

The general outcome is that, to provide support for indefi-
nite replica-failure, the notion of partial in partial replication
becomes not-really-partial-at-all. We prove that to imple-
ment causal consistency when indefinite replica-failures are
possible, it is impossible to respect the concept of genuine
partial replication – not storing or propagating operations
which are on objects a given replica does not replicate locally.

In our initial approach to tackle this issue client replicas
need only to replicate the operations they depend on which
have not yet been marked as durable by the centralised com-
ponent. We discuss remaining limitations and expected im-
provements in future work.
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1 Motivation
When attempting to create a partial replication algorithm
with inter-object causal consistency we encountered a clear
problem – what happens to dependencies on operations
respective to objects which are not locally replicated, if any
given node can fail indefinitely.
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Figure 1. The problem of lost operations.

A motivating example can be found in Figure 1, where
replicas share counter CRDTs A and B. 1 What happens if a
replica R2 only has interest in replicating object A, but its
direct neighbour creates operations for both objects A and
B? The question is, will R2 have to replicate operations on B,
or can it just ignore such operations?
Consider that replicas R1 and R2 are connected and ex-

changing operations. Replica R1 creates its first operation,
(R1 : 1), decrementing B and later creates (R1 : 2) incre-
menting A – notice that the latter operation depends on the
former.
After R1 propagates these operations to R2 (1), the con-

nection between replicas R1 and R2 fails (2) and, afterwards,
a new connection between R2 and R3 is established (3).
R2 and R3 will now attempt to synchronise state, specif-

ically, propagating to each other any operations on A not
known to the other. As R2 sends operation (R1 : 2) to R3, R3
discovers that it depends on (R1 : 1). 2 The problem is that
R1 might have failed, and the operation (R1 : 1) can be lost
forever if there is no special care taken here.

There are two cases which could happen:
• R2 stored nothing about B, leading to operations on A
to miss dependencies on B, and therefore (R1 : 2) can
not be executed at R3;

• R2 kept all operations on B where operations on A it
has executed on depend – correctly synchronises as
R2 can simply propagate (R1 : 1) along with (R1 : 2).

Notice that if replica R1 fails and never recovers, and
replica R2 stored nothing about B, then replica R2 will never
be able to fully synchronise with all other replicas due the
lost dependency.

1 The issue is not limited to counters nor CRDTs – any data-type requir-
ing causal delivery suffers from the same problem. The reader can find a
comprehensive list of CRDT specifications in [17].
2 Using some mechanisms for dependency tracking – such as keeping direct
dependencies [12, 13] or version vectors [10, 11]).
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2 Impossibility result
This section proves that it is impossible to tolerate non-
recoverable failures when using genuine partial replication
with causal consistency. For the purpose of this paper, gen-
uine only requires replicas not to store data, operations, or
meta-data of objects a replica does not replicate directly.

2.1 System model
We consider a system comprised of R replicas. The global
state of the system contains O objects, where each replica
r ∈ R replicates a subset Sr of objects (Sr ⊆ O).

Communication. We assume that any replica r1 can com-
municate with any other replica r2. Communication happens
in two phases:
synchronisation – the initial phase of synchronising both

replica’s objects;
propagation – when synchronisation is complete, replicas

propagate operations directly.

Failures. Any replica can fail, temporarily due to, for ex-
ample, networking or indefinitely due crash (i.e., fail-stop).
It will be clear later in this paper why we include indefinite
failures without the possibility to recover. Additionally, as-
sume that replicas do not behave arbitrarily – all replicas
follow system specification without any deviation.

2.2 Definitions
2.2.1 Causal consistency. Causal consistency is a con-
sistency model that can be described, at a high level, as
enforcing all replicas to always observe a state that respects
the happens-before relationships among operations [8]. Es-
sentially, considering any two operations o1 and o2 such
that o1 ≺ o2, where ≺ is the partial order that encodes the
happens-before relationship, causal consistency forbids any
replica to observe the effects of o2 without observing the
effects of o1.
We say that an operation o1 happened before operation

o2, o1 ≺ o2, iff o2 was generated in some replica n while o1
had already been executed in n. For a set of operations Ops ,
this defines a partial order among operations (Ops,≺).
We say that for a set of operations Ops , Oi = (Ops, <)

is a causal serialization of O = (Ops,≺) iff Oi is a linear
extension of O , i.e., ∀o1,o2 ∈ Ops,o1 ≺ o2 ⇒ o1 < o2. A
system enforces causal consistency iff, across all replicas,
operations are executed according to a causal serialization.

Multiple algorithms have been proposed to enforce causal
consistency (or implement causal dissemination)[1, 2, 5, 7–
9, 18, 20]. Two of the most popular techniques consist in us-
ing version vectors [10, 11] and direct dependency graphs [12,
13]. In the former, the dependencies of each operation are
summarized in a vector that states which operations gener-
ated at each site happened before a given operation. Using
direct dependencies, each operation includes information

on the concurrent operations that have been executed be-
fore their generation. By leveraging on the transitivity of
dependencies, it is possible to build the complete dependency
graph of an operation using only its direct dependencies.

2.2.2 Partial replication. An interesting topic especially
when considering consistency semantics not per-object, but
with respect to all objects. For example, if a system aims
to only provide per-object causal consistency, then the mo-
tivating example in Figure 1 in fact poses no issue at all –
individual objects can trivially be synchronised as no ver-
ification has to be done for operations over other objects.
Inter-object causal consistency on partial replication is, to
the best of our knowledge, still not a fully solved problem.

2.2.3 Synchronisation. Defined as two replicas being able
to synchronise their local states (converge) with each other
with respect to all objects they have in common. As our focus
is on partial replication, any pair of replicas will have differ-
ent subsets of objects in their replication sets. We consider
the synchronisation phase among two replicas successful
when all objects in the intersection of the replication sets of
both replicas converge to a single unified value.
For example in Figure 1 this means replica that R2 syn-

chronises A with both of the other replicas, while these will
synchronise both objects A and B directly among them.

2.3 Synchronising state with inter-object causality
We follow the example of Figure 1 directly to prove that
causal consistency cannot be provided with genuine partial
replication when replicas can fail indefinitely.

Theorem 1. A system cannot provide both causal consistency
and genuine partial replication if any replica can fail indefi-
nitely.

Proof. Let’s assume any two replicas, r1 and r2 are able to
synchronise among them. Replica r1 replicates objects Sr1 ,
r2 replicates objects Sr2 . The intersection of both replica’s
replication sets is I1,2 = Sr1 ∩ Sr2 .

For these two replicas to be synchronised, the final values
of all objects in the set I1,2 must be equal. I.e.,∀o∈I1,2 (r1.o.state =
r2.o.state). 3

For r1 and r2 to be able to synchronise correctly, two things
must happen:

• every operation op applied in r1 such that op.object ∈
I1,2 must be also applied at r2;

• every operation op applied in r2 such that op.object ∈
I1,2 must be also applied at r1.

Any mechanism which propagates the relevant missing
operations in an order respecting causality suffices [1–5, 7–
12, 14, 16, 18–20].

3 Save for concurrent reception or creation of new operations but a similar
proof can be devised for such scenarios.
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The third replica. Assume there is a replica r3 with repli-
cation set Sr3 , such that Sr2 ⊊ (Sr1 ∩ Sr3 ). I.e., replicas r1 and
r3 replicate at least one object which replica r2 does not have
in its replication set.
The set of objects which r2 is missing is defined by M =

I1,3 \ Sr2 . The set of objects which all replicas have is defined
as I1,2,3.
Consider objectsm ∈ M , and i ∈ I1,2,3 in the following

scenario: r1 creates operationsm1 alteringm, followed by i1
altering i . By the definition of causal consistency,m1 ≺ i1.

For replication to be genuine, r2 may store no information
on any object o ∈ M – thusm1 may not be stored at r2. After
r1 and r2 are correctly synchronised with each other, r1 fails
indefinetely. Now, r2 and r3 attempt synchronisation.

For r2 and r3 to be able to synchronise correctly, two things
must happen:

• every operation op applied in r2 such that op.object ∈
I2,3 must be also applied at r3;

• every operation op applied in r3 such that op.object ∈
I2,3 must be also applied at r2.

As r3 attempts to apply operation i1, it discovers it is miss-
ing the dependency onm1

4. Notice that r3 must wait form1
to arrive before being able to apply i1. Thus for r2 and r3
to be able to finish synchronisation (and inter-object causal
consistency to hold),m1 must eventually be delivered at r3.
As r2 didn’t hold any information onm1, and as the only

other replica (r1) which stored the operation has failed, this
means that r3 will never observem1 and can thus never apply
i1, concluding the proof. □

3 An initial approach
A distributed application typically has two options: either
clients communicate through a central set of servers, or they
communicate directly (in a peer-to-peer fashion). Using a
central set of servers negatively impacts both availability
and latency [20] while using a peer-to-peer communication
model is directly impacted by the impossibility result of
the previous section. Here we propose a hybrid approach
which uses both a central server also allowing client-to-client
communication to avoid these limitations.

3.1 System model
Our system model is comprised of two types of replicas, as
shown in Figure 2:
server-replica – seen as a black-box for all server-side repli-

cas, can store all client data5. We also assume failures
are temporary and that the server-replica eventually
recovers;

4Dependency tracking can be done, for example, by propagating version
vectors [10, 11] or direct dependencies [9].
5The central server replicas can use multiple geo-replication mechanisms
[1, 2, 5, 9], in this paper we simplify the idea to a single centralised server
for brevity and clarity.
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Figure 2. System model.
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Figure 3. Keeping dependencies of applied operations.

client-replicas – reside on client (the users’) devices, these
can only hold a small subset of all client-data and are
ephemeral in nature – last for a short time and fail-
ures might not be recovered from (e.g., application
uninstall).

Network and Communication. The networking model
departs from the typical client-server communication model
(star graph) to a client-client enhanced network (leading to
undirected graphs, for example, a tree where clients relay
operations through each other).

For the purpose of this paper we assume replicas initially
state which objects are to be replicated whose initial ver-
sions (for the replica) are fetched from the server. Any newly
replicated object follows the same mechanism – an initial
state is fetched from the server. Algorithms for fetching from
direct neighbours or on no longer replicating objects are or-
thogonal to this work.

3.2 Initial algorithm
To ensure any replica is able to synchronise with any other
replica, it must hold the dependencies for any operations it
has applied. As briefly shown in Figure 3, this adds the over-
head of keeping all operations our current state depends on.
Besides countering the primary objective – genuine partial
replication – it is impractical to store all operations forever.
Additionally, if all replicas can, indirectly, communicate to all
other replicas, this eventually grows towards full-replication.
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3.3 Optimising the algorithm
Existing algorithms [4, 16] based on Lamport’s notion of
stability [8] can be applied to garbage collect operations
which are no longer required to be kept to ensure eventual
synchronisation. These algorithms give a notion of what is
stable – which operations are known to be already propa-
gated throughout the whole set of replicas – and thus clearly
defines which operations are no longer needed. Constructing
a dependency-collection algorithm thus follows directly, but
this comes at the cost of running a stability protocol which
a) becomes increasingly expensive as additional replicas
join the system, and b) typically requires fixed and globally
known membership (which is impractical in our model).
An alternative is to offload the notion of reliability to a

specialised replica for this effect. This goes well with our
system model, where clients communicate in a peer-to-peer
setting but also with a server to bootstrap to the peer-to-peer
network and, possibly, to store data to ensure durability.
If the server replica stores all objects, then any replica

can fetch any missing dependencies from that replica. If it is
known (at client replicas) which operations the server replica
has observed, then garbage collection of these operations
can safely be executed as there will be the possibility to
fetch any dependencies from the server as a fallback when
any dependencies are found to be missing. Summarily, our
algorithm goes as follows:

• clients keep only a sub-set of all data objects;
• all operations are sent to all connected replicas, not
taking into account any knowledge of the interest sets
of the other replicas;

• operations on objects which the replica has no interest
in are kept until marked as durable.

An operations is said to be durable if it is stored at the
server-replica. This information is sent by the server every
∆ seconds to any connected replicas and then propagated
over the peer-to-peer network. Notice that this is similar
to the discussed notion of stability – it comes at the cost of
meta-data size which, in the worst case, is in the order of the
amount of replicas in the system [6].
There are, however, some important properties which

make the proposed algorithm interesting:
first, is that not every replica is required to communicate

with (or even know about) every other replica,
second, is that any replica is able to correctly synchronise

with any other replica,
third, ∆ can be dynamically adjusted for the specific needs

of the application at hand,
and finally, an interruption on the durability protocol has no

impact on safety and liveness, it only brings the cost
of keeping operations until the mechanism restarts.

4 Conclusion
This work follows directly from the attempt to extend a
causally consistent system to the client-side [20]. The exist-
ing synchronisation model assumed full replication, which

was promptly deemed impractical for client-side replicas. Ide-
ally each client replica receives and stores only operations
and data it is directly interested in.
An initial attempt, shown in Figure 1, only synchronises

objects between a pair of replicas if these are within the inter-
sections on their respective interest sets. Such a mechanism
doesn’t suffice – causal consistency cannot be maintained
on inter-object dependencies.
Our approach is to leverage on server replicas which al-

ready provide the notion of durability. Any operation can
safely be discarded as soon as it is know to be durable. The
algorithm has interesting properties which are a good basis
for a real client-side causally consistent replication system.

Considerations for future work
The proposed algorithm, even if academically interesting,
is clearly is not enough. Neither aspects of the initially dis-
cussed notion of genuine are actually achieved – replicas
receive operations on objects they are not interested in, and
are forced to keep them to provide causality among objects.

The chosen implementation of the overlay – the network
client establish by synchronising and propagating operations
– can have a great impact here. If the overlay creates con-
nections to other replicas in a way that promotes a large
overlap on the interest set of replicas, then the amount of
stored dependencies on non-replicated objects is small. In
fact, if a given workload has clear boundaries on interest sets
then a completely separate overlay can be created for each
interest set, separating them at the network level without
any alteration to the consistency mechanism.
An approach leveraging strict topology rules (such as a

causal propagation trees [5]) can be leveraged to reduce the
size of the necessary meta-data to track dependencies. In fact,
techniques such as causal separators [15] – where specific
topologies are leveraged to create disjoint sets of replicas to
reduce vector sizes – can easily be applied with the help of
the multiple server replicas of our centralised component.

We intend to explore these ideas in future work.
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