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Abstract
In the last few years, causal consistency has become a pop-
ular consistency model for geo-replicated databases. The
algorithms proposed to enforce causal consistency typically
associate with each operation some metadata, which is used
to guarantee that an operation is not executed if its execution
would break causality. This may lead to the impression that
causal consistency is intrinsically costly and non scalable.

In this paper, we analyze the metadata costs of enforcing
causal consistency and put these costs in perspective, con-
sidering the metadata that is necessary to enforce reliability.
We show that by wisely ordering the propagation of oper-
ations it is possible to enforce causal consistency without
any additional metadata other than the already necessary to
enforce reliability.

CCSConcepts: •Computer systems organization→ Peer-
to-peer architectures; Distributed architectures; Reliabil-
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1 Introduction
Causal consistency [18] has gained attention as a consistency
model for geo-replicated databases in the last few years, as
it has been shown that causal consistency is the strongest
consistencymodel that can be enforced in an highly available
way [3]. A large number of algorithms have been proposed
recently in literature to enforce causal consistency [1, 7, 11,
12, 18]. In the past there were also works that have studied
the problem of executing operations in causal order [15]. In
fact, enforcing causal consistency is equivalent to enforcing
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that operations are delivered (and executed) in a causal order
across all replicas. 1
In general, to enforce causal consistency, algorithms use

additional metadata – typically added to each operation.
When an operation is received, this metadata is used to guar-
antee that the execution of the operation will not violate
causal consistency, delaying the execution of the operation
if necessary.

Charron-Bost in 1991 [9] proved that, to provide the ability
to check for concurrency in causal consistency (i.e., char-
acterising causality or verifying causal independence), the
minimum necessary metadata attached to any operation is
on the order of the amount of nodes which can apply writes
to the system state. Intuitively, this is because n is the upper
bound of the dimensions of a computation distributed over
n nodes (the global execution lattice). Interestingly, to pro-
vide causal consistency, being able to characterise causality
is not at all important, as long as operations are delivered
respecting their causal order [16, 26, 29].
In a system that aims to provide causal consistency, a

more basic property which needs to be enforced is reliability:
guaranteeing that every operation submitted is eventually
executed in every replica. To enforce reliability, algorithms
also need to use some metadata.
In this paper, we analyse the cost of metadata to enforce

causal consistency knowing that some metadata already
needs to be used to enforce reliability. We show that it is
possible to enforce causal consistency in peer-to-peer net-
works, where nodes can synchronise pairwise, with only the
metadata which is already necessary to enforce reliability.

2 Definitions and system model
Causal consistency is a consistency model that can be de-
scribed, at a high level, as enforcing all replicas to always
observe a state that respects the happens-before relation-
ships among operations [16]. Essentially, considering any
two operations o1 and o2 such that o1 ≺ o2, where ≺ is the
partial order that encodes the happens-before relationship,
causal consistency forbids any replica to observe the effects
of o2 without observing the effects of o1.
We say that an operation o1 happened before operation

o2, o1 ≺ o2, iff o2 was generated in some replica n while o1
had already been executed in n. For a set of operations Ops ,
this defines a partial order among operations (Ops,≺).
We say that for a set of operations Ops , Oi = (Ops, <)

is a causal serialization of O = (Ops,≺) iff Oi is a linear
1 To include convergence, Causal+ consistency, although not equivalent,
only requires that operations are delivered in causal order in all replicas.
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extension of O , i.e., ∀o1,o2 ∈ Ops,o1 ≺ o2 ⇒ o1 < o2. A
system enforces causal consistency iff, across all replicas,
operations are executed according to a causal serialization.

Multiple algorithms have been proposed to enforce causal
consistency (or implement causal dissemination)[2, 4, 8, 13,
16, 19, 27, 29]. Two of the most popular techniques con-
sist in using version vectors [20, 21] and direct dependency
graphs [22, 23]. In the former, the dependencies of each oper-
ation are summarized in a vector that states which operations
generated at each site happened before a given operation.
Using direct dependencies, each operation includes informa-
tion on the concurrent operations that have been executed
before their generation. By leveraging on the transitivity of
dependencies, it is possible to build the complete dependency
graph of an operation using only its direct dependencies.

2.1 Model
For the remainder of this paper we consider a distributed
system composed of n nodes, where each node maintains
the full state of the database (unless mentioned otherwise).
Nodes can fail by crashing, but they do not behave arbitrarily.
When discussing algorithms, we call local operations to

the operations that were submitted in a given node (oper-
ations created at that node), and remote operations to the
operations submitted in any of the other nodes (those re-
ceived through the network).

3 Causal consistency with a central node
We start by observing that a simple way to enforce causal
consistency is to use a central node for propagating opera-
tions – this approach is used, for example in CVS and sub-
version. A simple algorithm could work as follows (depicted
in Figure 1).

C n1

n3n2 C:

n1:
n2:
n3:

C:

C:

Figure 1. Central node approach.

Each node has a FIFO channel with the central node. Every
operation executed in a node is propagated to the central
node using the FIFO communication channel.

The central node receives the operations from each chan-
nel in order, and adds it to the outgoing queue of every other
node atomically (in partial replication scenarios, it is only
necessary to put the operation in the queue of nodes inter-
ested in the operation). Operations are propagated to nodes
asynchronously using the FIFO channel.

This algorithm enforces causal consistency because: (i) op-
erations submitted in a replica execute in the same order
across all replicas, as they are propagated through FIFO chan-
nels and processed in the order in which they are received;
and (ii) when an operation is submitted in a replica, all re-
mote operations known locally are, at least, in the outgoing
queues to all other nodes, thus guaranteeing that they will
be executed before the operation that is currently being sub-
mitted.
In this case, no specific metadata is necessary to enforce

causal consistency in a run without faults. Considering that
nodes and channels can fail, wewould need somemetadata to
guarantee reliability and causal consistency. Independently
of the failure recovery algorithm, it seems clear that the re-
covery process would need to determine if a given operation
had already been propagated or not, for which it would need
operations to be identified with a unique identifier. Lam-
port clocks [17] can be used to create unique identifiers (for
example, composed of the pair replica:timestamp) that
would allow to enforce reliability while also being the base
to enforce causality without any additional metadata.
Recovering from faults can be performed as follows. For

faults in the channels, when creating a replacement channel,
nodes start by exchanging the identifier of the last message
they have received. Each node resumes sending messages in
the queue for the peer starting with the message following
the last received message from the peer. For faults in nodes,
in a crash-recovery model, when a node recovers with its
previous state, it only needs to resume the propagation of
channels. This can be done by executing the previous channel
recovery process for every channel it has. For recovering
from a definite fault of the central node, each node can replay
its log –when receiving an operation, all nodes (including the
central node) discard operations they have already received.

4 From a star topology to a dissemination
tree

When reasoning why using a central node is sufficient to
enforce causal consistency, we can conclude that it is due
to the fact that when an operation goes through the central
node, all of its dependencies had already been propagated
by that central node to all other communication channels
(or added to the respective queues).

It is possible to extend this idea and, instead of using a
central node connected to every other node for propagat-
ing operations, to use a dissemination tree connected by
FIFO channels (as depicted in Figure 2) 2. A node receives
operations from each of its channels in order. When a node
receives an operation, it atomically both delivers the opera-
tion locally and puts it in the outgoing queues of every other
channel. Additionally, the creation of a new local operation

2The overhead of maintaining a tree, possibly per partition, is orthogonal
to the meta-data cost of reliability.
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leads to it being atomically added to the outgoing queue of
every channel that node has.

C n1

n3n2

n1:
n2:

n2:

C:

C:
n3:

Figure 2. Dissemination tree.

This guarantees that when an operation is added to a
channel’s queue, all of its dependencies have already been
propagated through the channel (in one or the other direc-
tion) or are queued ahead of that operation in the channel.
Saturn [7] uses this approach to enforce causal consistency
in partially replicated databases, by propagating operations
through all channels that will reach nodes interested in the
operations3.

In this case, again, we do not need any metadata to enforce
causal consistency in a runwithout faults – thewaymessages
are propagated guarantees that theywill be received in causal
order. Recovering from faults would be more complex than
in the central node scenario, but similar techniques could be
used relying on Lamport clocks.

5 Peer-to-peer networks
We now consider the more general case where any pair
of nodes can communicate with each other to propagate
operations. Two classical approaches are used to enforce
causal consistency in this setting.
In the first, proposed by Lamport, operations are tagged

using a Lamport clock and an operation can only be executed
after it is known that there is no operation to be received
with a smaller Lamport clock. If every node communicates
with every other node directly, and nodes propagate local
operations in order, when a node n1 receives an operation
with clock t from n2, it knows that it has already received all
operations with clocks smaller than t from n2. This approach,
depicted in Figure 3, does not need any specific information
to enforce causal consistency, but it requires every node to
communicate with every other node to execute a stability
process which can take long.
An alternative approach is to use vector clocks, where

every operation includes a vector clock that records the exact
operations an operation depends on (depicted in Figure 4).
When receiving an operation, a node can locally verify if all
dependencies are satisfied and, if not, it knows exactly which
operations are missing. When compared with the previous
3Saturn actually only propagates unique identifiers of the operations
through the channels, and propagates operations directly among nodes, but
for this discussion this implementation aspect is not relevant.

stable = min(ts1,ts2,ts3,ts4)

ts1n4 n1

n3n2

c:ts1
n2:ts2
n3:ts3
n4:ts4

[...][...]

[...]

ops: tsx *

Figure 3. Lamport clocks and stability.

approach, this trades having specific metadata to enforce
causal consistency for being faster in determining when it is
safe to execute an operation.

vv:
{ (n1:8),(n2:7),
(n3:7),(n4:3), }n4 n1

n3n2

vv:{
(n1:8),(n2:7),
(n3:7),(n4:3),
}

[...][...]

[...]

ops: vv *

Figure 4. Version vectors.

Direct dependencies can be used as a compressed history
instead of using version vectors which can become large
when multiple replicas are able to create operations. Each
operation is tagged with its direct dependencies – the last
operations to have been locally applied which are concur-
rent among each other. As depicted in Figure 5, instead of
maintaining a version vector, a dependency graph is stored
at every node.

[...]

[...] id:{n1:4}
deps{ (n3:1),(n2:2)}n4 n1

n3n2 [...]

ops: id, deps *

n1
n2
n3

1

1

1

2

2 3 4

Figure 5. Direct dependencies.

Optimisations and garbage collection. Each of the pre-
vious mechanisms can be augmented with garbage collec-
tion. Building on the stability notion of Lamport clocks,
many algorithm proposals exist for providing the notion
of stability for both version vectors and direct dependencies
[5, 6, 22, 24, 25, 28].
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[...]

[...] n4 n1

n3n2 [...]

ops: id *ops: id *

Figure 6. Initial algorithm.

5.1 Algorithm
We now show that it is possible to avoid executing complex
stability processes or having additional metadata to enforce
causal consistency. The only cost of additional message over-
head is the one already required to provide reliable delivery.
In our algorithm, every node keeps an ordered list of op-

erations it has previously executed. The key idea is that the
list of operations maintained in each node respects causality,
i.e., all dependencies of an operation o appear before it in
the list. We start by presenting a non-optimised version of
the algorithm (Figure 6) and then discuss possible ways to
optimise it (Figure 7).
When an operation is created at a node, the operation is

appended to the list. This maintains the list causally ordered
with respect to locally created operations.

One node communicates with some other node by sending
it the full ordered list of operations. When receiving a list of
operations from a remote node, the node iterates through
the list in order and for each operation, if it is not in the
local list, it appends the operation to the local list. The local
list thus remains causally ordered, as when an operation is
added to the local list, all operations which appear before
in the received list are already in the local list. Thus, any
dependency of the operation is necessarily already satisfied.
For executing this algorithm, it is only necessary to be

able to check if an operation is already in a list, for which
we need to assign a unique identifier to an operation. This
algorithm tolerates network faults. It also allows a node to
fail and recover if it maintains its list in stable storage. We
note that this information would be also necessary to enforce
reliable execution of operations. Thus, causal consistency is
adding a grand total of zero additional metadata.

This algorithm has another interesting property: it is pos-
sible to add new nodes to the network, at any moment and in
a decentralised way, which is not the case for algorithms that
need to execute a stability process. The algorithm described
is not new, in fact a very similar causal ordering mechanism
for exchanging messages is presented in [25]. Our adaption
suffices to make the point we wish to make.

[...]

[...] n4 n1

n3n2 [...]

ops: id *less: id *
ack:id

n4
n2

Anti
Entropy

Figure 7. Optimisations.

5.2 Optimizing the algorithm
Although from the theoretical point of view the previous al-
gorithm has interesting properties, propagating all messages
in every synchronisation is not acceptable in practice. It is
clear that when a node propagates its full list of operations
to a remote node, it actually only needs to propagate the
operations that are still not known by the remote node (as al-
ready known operations are ignored when they are received
– i.e., the list does not keep duplicates). Several techniques
can be used to minimize the operations to send. We present
simple adaptions in Figure 7 which we describe next.
First, when a node sends operations to a remote node,

and the reception is acknowledged, it can locally record that
information – for each remote node, it would suffice to main-
tain the last position of the local list that was acknowledged
remotely. Thus, each node will send each operation only
once to a remote node (in lieu of failures). Second, when a
node receives an operation from a remote node, if it already
knows the operation, it can also record that the remote node
already has that operation.
Previous works [6, 25] implementing such mechanisms

require every node to store information about every other
node. Global knowledge about every node is impractical and
a solution which permits any pair of nodes to efficiently
communicate is preferred. Our algorithm only keeps such
information for every connected node, but still needs to
efficiently handle new connections (or recover from failures).
When two nodes synchronise they could start by propa-

gating a summary of locally known operations – e.g., using a
vector clock as in anti-entropy epidemic communication [10].
This last optimisation is typically more interesting when
synchronising with a node for the first time (or after a long
period without direct communication). In systems with a
large number of nodes, it is possible to use mechanisms to
minimize the size of vectors transmitted [14].

We note that if we want to enforce reliability in the same
setting, similar techniques must be used. Thus, when enforc-
ing reliability we can enforce causal consistency without any
additional overhead by only carefully deciding the order in
which operations are propagated.
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6 Conclusion
In this paper we explored the different communication mod-
els that existing causality tracking solutions employ: using
a centralised node, a dissemination tree, or a general peer-
to-peer model. We show, for each communication model,
that the metadata overhead required to enforce reliability
is enough to also provide causal consistency. For the most
common scenario, where every node can communicate with
any other, we also present an overview of an algorithm that
supports our claim.

Overall we show that, for a system that already aims to pro-
vide reliable delivery, the intrinsic cost of providing causal
consistency is zero, further motivating causal consistency as
a practical and adequate consistency model.
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