

System Support for Large-Scale Collaborative
Applications

Nuno Preguiça, J. Legatheaux Martins
Henrique J. Domingos and Jorge Simão

Departmento de Informática

Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa

Quinta da Torre, 2825 Monte da Caparica, Portugal

{nmp,jalm,hj,jsimao}@di.fct.unl.pt

Technical report 01-98 DI-FCT-UNL

 2

System Support for Large-Scale Collaborative
Applications

Nuno Preguiça, J. Legatheaux Martins
Henr ique J. Domingos and Jorge Simão

Departmento de Informática
Faculdade de Ciências e Tecnologia– Universidade Nova de Lisboa

Quinta da Torre, 2825 Monte da Caparica, Portugal
{ nmp,jalm,hj,jsimao} @di.fct.unl.pt

ABSTRACT
In this technical report we describe a storage system aimed
on supporting collaborative applications in large-scale
environments that include mobile computers. To maximize
availability, it uses weakly consistent server replication and
client caching with a read any/write any model of data
access. To allow easy management of concurrent updates it
provides an object framework that isolates the programmer
from the inherent complexity of data replication through
code reuse. Type and situation specific conflict detection
and resolution are implemented based on support provided
by the system and the object framework.

Keywords
Large-scale asynchronous groupware, mobile computing,
replicated storage system, log propagation, object
framework.

INTRODUCTION
The widespread use of computer networks opened new
opportunities for collaboration among people on different
geographical places. Several general-purpose Internet-based
services have been developed and are in use, notably the
Internet news and mail systems. However, enhanced
support for groups of users seeking a specific common
objective require specialized applications such as multi-user
editing tools, cooperative schedulers and calendars,
conferencing systems, workflow systems and others [8,10].

While some of these applications are synchronous,
requiring only some sort of group-messaging support [30],
most of them rely heavily on a storage system to enable
information sharing, distribution and composition. Some
support systems have been implemented, either for general
use (e.g., Lotus Notes [16]), for some specific domain (e.g.,
LinkWorks [26] for workflow) or for some specific
applications (e.g., Iris[18]).

The increasing popularity of mobile and disconnected
computing poses new requirements on existing support
systems [1,13]. It also opens opportunities for new forms of
work – cooperative telework – which in turn exacerbates
the need for (primarily asynchronous) collaborative
applications.

In this technical report we present a replicated object
repository aimed on supporting large-scale heterogeneous
computing systems including mobile and disconnected
computers. This system can be used as a basis to build
asynchronous cooperative applications for distributed
groups, managing the inherent complexity associated with
data replication and concurrent updates merging.

Our storage system, named DAgora, is based on groups of
servers that replicate sets of related objects with a read any
/ write any model of data access in order to maximize data
availability. A client caching mechanism is also provided to
cope with mobile and disconnected computing.

DAgora also provides an object framework that allows new
data types to be composed from reusable predefined
components and regular object classes, thus hiding from
application programmers the complexity associated with
data distribution. Different policies exist to apply
concurrently made updates to different replicas, thus
allowing each data type to incur only in specific overhead.
Flexibility in concurrent updates handling is achieved by
our object framework data types composition and DAgora
open implementation, that allows new policies to be defined
as required.

In the remainder of this technical report we present the
requirements we believe essential to support distributed
asynchronous groupware and the design choices we have
made to fulfil them, some applications we have
implemented to evaluate and demonstrate DAgora
flexibility, the DAgora repository architecture and the
associated object framework, status of the DAgora
prototype and intended future work, comparison with
related work, and finally some conclusions.

REQUIREMENTS AND DESIGN CHOICES
Consider three different and well-understood asynchronous
collaborative applications: a conferencing system, a multi-
user editing tool and a group scheduler. All these
applications require some sort of data repository to manage
their shared data. Due to scale, mobility and disconnection,
traditional concurrency control methods are unsuitable.
Moreover, we believe that ideally all these applications
should allow every user to modify any data concurrently
without any restriction (besides coordination and access

 3

control mechanisms). Concurrently made updates should be
automatically merged in a type- and situation-specific way.
Bellow we present some operational scenarios that illustrate
these claims.

In a conferencing system, any user should be allowed to
reply to a previously existing statement. All concurrent
replies should be displayed in a consistent way across
different conferencing replicas. In a multi-user editing tool,
different users should be able to modify the same structured
document. All modifications should be reflected in the final
document, creating versions of document elements (e.g.
chapter, sections) if concurrent updates to the same
elements have been produced. In a group scheduler
application, users should be allowed to require new
appointments, which must be considered tentative [32] until
being committed by some form of automatic global
agreement.

From the above scenarios we note that in asynchronous
applications users cooperate by accessing and modifying (or
applying operation to modify) some shared data. Thus, the
storage system should always be a central piece of any
support system. Two major and interrelated problems
should be tackled: high-availability of data and concurrent
updates handling. For some applications other supports
should also be provided, such as a notification and a
coordination sub-systems [5]. In this technical report we
present exclusively the storage system support.

High-availability
In large-scale settings, connectivity among system
components is often limited (due to low bandwidth and
expensive connections), and at times, even unavailable (due
to network and/or machine failures and disconnected
computers). Since a single storage site may not be
permanently reachable from some client machine,
replication is required in order to provide high-availability
of service. To avoid low write availability in presence of
partitioned networks [3] and due to intrinsic groupware
properties, weak consistency of replicated data is desirable.

For the above reasons, we have adopted a read any / write
any model, in which updates can be applied to any replica
independently. We have also adopted an epidemic scheme
of update propagation among servers [24], where every
server eventually receives all updates from every other,
either directly or indirectly. This scheme requires only
occasional pair-wise communication between computers,
thus taking into consideration connectivity constraints.
Some consistency across replicas will eventually be reached
(in absence of new updates) as all updates are propagated to
all replicas.

Mobile computers, with its inherent reduced connectivity,
only exacerbate the above constraints [1,13]. Moreover, the
reduced hardware resources available (as presented for
instance by personal digital assistants – PDAs), often make
impossible and/or undesirable for clients to manage a full
unit of replication (that usually corresponds to large

amounts of data). By these reasons, DAgora has also
adopted a client caching mechanism [17] that allows users
in disconnected machines to continue their work, keeping
copies only of key data.

Concurrent Updates Handling
Experience and prior research have proven that one of the
main issues involved in the management of data in large-
scale and mobile computing environments is the handling of
uncoordinated/independent concurrent modifications. In
database systems, where it has been most actively studied,
concurrency control is usually achieved through
transactions [4]. Transactions may be implemented either
using pessimistic (e.g. locks) or optimistic (e.g. timestamps)
techniques. While using optimistic techniques, several
transactions are allowed to proceed concurrently until
commit time, being aborted if ACID properties have been
violated. As ACID properties in conjunction with
conventional reliance on primitive read/write semantics are
often too restrictive, several techniques have been proposed
in order to reduce high abort rates, either exploiting type
[29] or application semantics [19].

Several (primarily synchronous) groupware systems have
adopted locking mechanisms [27] and optimistic
transactions [28]. However, we believe that these
mechanisms are unsuitable for asynchronous groupware due
to two main reasons:

• In presence of partitioned networks and disconnected
computers strong locking mechanisms impose a too
restrictive data access model (locks held by some
disconnected computer may avoid data access for too
long periods). On the other hand, weak locking
mechanisms usually lead to abortion.

• Updates granularity in asynchronous applications is
usually large, representing a semantically consistent unit
(e.g. a new version of a chapter). For this reason,
abortion of such amounts of work is often unacceptable.

For the above reasons, we believe that unrestricted
concurrency should be the rule, i.e., no restrictions should
be imposed to users work (besides coordination and access
control mechanisms). Additionally, some merging
mechanism must be devised to allow automatic merging of
the multiple parallel activity streams [6], taking into
account all concurrently made updates (collaboration
purpose is contribution merging by definition).

It seems incontestable that, in absence of conflicting
concurrent updates, automatic merge should be done.
However, the definition and detection of conflicting updates
is not trivial. Moreover, whilst there are many actions that
can be taken in presence of conflicting updates, the
adequate one seems to be type and situation specific.
Flexibility should be a key criteria of the mechanisms
needed to handle these updates.

Two models exists to store and propagate modifications [9]:
state propagation – where each update is immediately

 4

applied to data and its effects transmitted; log propagation –
where each update, besides being applied to data, is stored
in a log which is used to propagate modifications.

State propagation main advantages are: simpler
implementation because no log management mechanism is
required; and straightforward implementation for a
replicated storage system based on a get/put model of
access (the common use of file systems). However, log
propagation has also several advantages, namely: it enables
easy merging of concurrent updates (in absence of conflicts,
merging concurrent updates is reduced to applying all
updates sequentially); it enables precise conflict detection,
based on precise update definition (state propagation often
leads to false conflicts detection since it is hard to exactly
determine the changes made); and enables flexible conflict
resolution by update manipulation (which is allowed by
knowledge about operations semantics). Moreover, state
propagation may be regarded as a special case of log
propagation. Finally, log propagation provides the base
(information) support to implement notifications on update
operations.

Several systems, like Coda [17], Ficus [11]and Lotus Notes
[16], have previously used state propagation. However,
experience with those systems demonstrates the complexity
of concurrent updates merging based on state propagation,
mainly due to mismatching manipulation/structuring
granularities and lack of update semantics knowledge. For
instance, in Lotus Notes, this complexity leads to a single
mechanism of update merging – concurrent versions of the
same fields are reflected in the final document as different
versions (original implementation of Notes consistently
chose one version, discarding others). While this strategy is
adequate for several applications, it poses (unsolvable)
problems to others.

Mismatching manipulation/structuring granularities are
illustrated by the example presented in figure 1. In this
example, each document would usually be stored as a single
file or Notes rich-text field, but users will usually modify
only part of the document. Thus, to produce the expected
document not trivial processing would be required to detect
differences between different document versions.
Moreover, based only on middle versions of the document,
i.e., without any further information, it is impossible to
determine which versions of the chapters correspond to the
new ones, thus making it impossible to automatically
produce the expected document.

Due to the above reasons, DAgora object repository is
based on log propagation, like Bayou [32] and Rover [14].
However, unlike Bayou that presents a relational database
data model, Rover and DAgora allow generic object
definition. Thus, they enable definition of complex and
suitable data types, without imposing data to fit the
available data model. Restricting all applications to a single
data model lead to unnecessary and complex exercises of
data manipulation, trying to squeeze data structure to the

available model, which sometimes turns out to be an
unsolvable situation.

....
Chapter 2
Old chapter 2
....
Chapter 5
Old chapter 5
....
Chapter 7
Old chapter 7
….

....
Chapter 2
New chapter 2
....
Chapter 5
Old chapter 5
....
Chapter 7
New chapter 7

....
Chapter 2
Old chapter 2
....
Chapter 5
New chapter 5
....
Chapter 7
New chapter 7

....
Chapter 2
New chapter 2
....
Chapter 5
New chapter 5
....
Chapter 7
New chapter 7 – version 1
New chapter 7 – version 2

Figure 1 – Expected evolution of a concurrent
editing session. The middle versions represent two
concurrent modifications to the same document.

Moreover, and unlike Rover, DAgora presents an object
framework that enables easy and flexible object
construction. This open object framework is constituted by
several components that manage the inherent complexity
associated with data types implementations (notably,
updates logging and ordering), thus restricting work
involved in data type construction almost to common object
definition. For each of these components several predefined
semantics are available and others can be defined, thus
allowing data types to exhibit different updates management
policies. For this reason, and unlike other previous systems,
this framework enables each data type to incur only on
specific overhead dependent on specific behavior.

EXAMPLE APPLICATIONS
To demonstrate system’s operation and to evaluate its
requirements and mechanisms, we have developed two
applications: a scheduler and a multi-user document editor.
We believe that these application, although very simple and
implementing only a subset of functionalities required for a
production-level version, highlight the storage system and
concurrent update management requirements for different
types of applications.

Scheduler
The scheduler application enables users to reserve
resources, such as meeting rooms, projectors, etc. At most
one reservation may be granted for the same period of time.
This scheduler is only intended for use after people have
decided the set of acceptable periods of time for which they
want to reserve the given resource. It does not help people
to agree, for instance, in a mutual agreeable period of time
for a meeting.

Users interact with a graphical interface, presented in figure
2, observing which periods are already reserved. Two kinds
of reservations exist: committed and tentative. While for
committed reservations displayed times are unchangeable

 5

(unless reservation is deleted), for tentative reservations
displayed times are dependent on the existence of other
reservations, yet unknown, that reserve the same times.

Figure 2 – Scheduler application. Main window
presents known reservations. Reservation window is
used to set a new appointment.

Users make their reservations filling a form indicating the
set of alternative times for which they intend to reserve the
resource and giving a brief description of the reason (for a
meeting room, it may be the description of the meeting that
will take place).

The underlying storage system of the scheduler application
should transparently support the existence of tentative and
committed versions of the same resource calendars.
Moreover, it should be able to commit new appointments as
soon as possible – in presence of mobile computers, this
calls for a primary replica calendar. Although different
calendar replicas may, in a given moment, present different
values (due to a different set of known and committed
updates), these values should be coherent – a committed
appointment should be scheduled for the same period of
time in all replicas.

Multi-user Document Editor
The editor application allows users to produce documents
cooperatively. Users may modify documents without any
restriction, though we expect coordinated users to modify
different parts of the same documents. Although documents
are stored as single data units in our repository, they are
structured in independent components, as proposed by
several collaborative editing tools [18,23].

Two base components are used to build documents:
containers and leaves. Containers are sequences of other
containers and/or leaves and define documents hierarchic
structures. Leaves represent atomic units of data that may
have multiple versions and may be of different types. A
document is a hierarchical composition of these
components, representing the document structure.

For instance, a LaTeX document has several containers and
several leaf types, as illustrated in figure 3. Each leaf

component defines its type and default associated editor to
be used. Each container defines its initial composition and
possible new components.

Currently a small set of document types is implemented,
including a generic hierarchic structured document, a
LaTeX document and a Java source document. To allow the
same document editor to manipulate different documents
types (based on the same base components), reflection
information is provided in the derived components. Export
and import functions allow interoperability with file system
based tools.

Figure 3 – DAgora editing tool with a LaTeX
document.

In figure 3 we present the edition of a LaTeX document.
The editor window is divided in three areas: structure,
version and editing areas. This allows easy document
structure and leaf version navigation

Concurrent updates to document structure are merged
sequentially applying both modifications – the rationale
being that if two users (for instance) add a new chapter,
they are probably adding two different chapters. When
users intend to add the same chapter, they should merge
them later. Deletion is handled through a pair of operations
mark as deleted / discard in order to avoid delete / modify
conflicts and to guarantee that no component of a document
is deleted while is considered of interest by some user.
Updates to same leaf elements are merged through version
creation.

To allow the outlined concurrent updates handling policy,
the repository should be able to order all updates – so that
all replicas could evolve coherently. However, all updates
known in each replica should be immediately applied to
maximize awareness about users contributions. Moreover,
the storage system should provide a mechanism to detect
concurrently made updates so that, version creation could
be correctly handled.

As can be seen from these two examples, the programmer
should be able to select very flexibly the way concurrent

 6

updates are handled in each case. Besides the above-
mentioned requirements, the need for high-availability is
implicit in both applications. Users must be able to access
the same data objects, even in presence of network and/or
server failures. When disconnected, users must be able to
access and modify data objects. Updates will be
reintegrated as soon as possible (i.e., when user reconnects
to system).

In the next section we will present the structure of the
repository and the way it operates. Later we will present the
object framework allowing flexible concurrency handling.

REPOSITORY STRUCTURE / OPERATION
DAgora storage system is a distributed object repository
based on a client / replicated server architecture. DAgora
manages objects, known as coobjects (from collaborative
objects). Coobjects are organized in sets, known as
volumes. Each coobject belongs to a single volume and has
a unique identifier relative to the volume. Each volume
represents a collaborative workspace, containing coobjects
relative to a given workgroup and/or cooperative project.

DAgora applications run on client machines, allowing users
to collaborate through concurrent modification of the same
coobjects. Coobjects may be rather complex (such as a
document or a scheduler calendar) and be implemented as
an arbitrary set of regular objects. Applications employ a
get / modify locally / put changes model of data access:
they obtain private and local copies of coobjects, modify
them by usual methods invocations, and finally explicitly
export updates made.

DAgora architecture is depicted in figure 4. Servers
replicate volumes of coobjects in order to guarantee high-
availability in presence of networks and/or server failures.
Clients cache key coobjects so that users may continue their
work, even while disconnected.

Server

Vol.
Foo

Vol.
Bar

Vol.
Baz

Server

Vol.
BarServer

Vol.
Baz

Server

Vol.
Bar

Vol.
Baz

Client

Baz.Fum

Front-End

Application

Baz.Fum
anti-entropy

CoObjects
anti-entropy

anti-entropy

anti-entropy
updates

Figure 4 - DAgora object repository architecture.

When an application requests a given coobject, if it is not
present in client cache, it is fetched from a server. A private
copy of the coobject is created and handed over to the
application. Application uses the coobject as a regular
object, invoking its methods to query and modify coobject’s
state. Finally, users may record explicitly their changes (or
not). Updates made by applications are registered as

sequences of methods invocations (logged internally and
transparently by coobjects). These sequences are stored in
stable storage at clients machines, and later sent to a server.

As outlined, clients are responsible to fulfil users requests.
To this end, they manage a local cache, in order to
guarantee that coobjects requested by applications will be
mostly available. Coobjects are obtained from any server
that replicates them. Clients make their best effort to
guarantee that copies handed over to application are up-to-
date with some server replica.

Clients also manage a stable log of invocations to volumes.
These invocations represent sequences of updates
performed by users to coobjects. Updates are forwarded to
servers that replicate each volume as possible. This
mechanism is similar to a deferred RPC (with no return
parameters).

Upon arrival of sequences of updates from a client machine,
the server hands them over to the coobjects local replica.
Coobjects implementations are responsible for storing and
applying them. Different coobjects will apply updates
obeying different constraints, usually guaranteeing that all
replicas will eventually converge (as all updates are
propagated to all replicas). Servers establish pair-wise
occasional communications to propagate newly received
updates, which are obtained from and delivered to coobjects
local replicas. As a consequence of this mode of operation,
replicas of the same coobject may differ, in each moment,
in different servers, but they will eventually converge.

As outlined, servers, besides interacting with clients, are
responsible to manage volume replication. Each volume is
replicated by a variable set of servers. DAgora servers
propagate updates among themselves, synchronizing their
coobjects replicas, during pair-wise communications,
known as anti-entropy sessions [24]. The two servers
involved in a session exchange updates so that when they
finish, both agree on the set of updates known, for each
coobject. Epidemic algorithms theory guarantees that as
long as servers and communication paths form a connected
graph (i.e., as long as servers are not permanently
partitioned or failed) each update will eventually reach all
servers. In absence of new updates performed by clients, all
servers will eventually know all updates and hold the same
data.

DAgora protocol [25] maintains and exchanges summaries
of updates seen in each server for each coobject
(represented as timevectors) in order to minimize updates
exchanged during anti-entropy sessions. Additional
acknowledgment summaries are used to purge updates from
coobjects logs. DAgora protocol enables anti-entropy
sessions to occur over multiple transports, including
asynchronous methods of communications, such as e-mail.
Thus, it allows servers lodged in mobile computers to
synchronize with each other without need for direct
connections between them.

 7

The group of servers that replicate each volume may vary as
a result of users (system administrators) explicit orders. To
this end, DAgora uses a well-known coobject in each
volume to track and propagate volume membership
changes. Join and leave protocols are light-weighted
imposing communication with only one server. Membership
changes are propagated during usual anti-entropy sessions.

In order to promote tailorability and flexibility we have
made a clear division of responsibilities between the system
core (stable and unmodifiable) and the coobjects
implementations (which are under programmer control)
System core is responsible to: fetch copies of coobjects
from servers and cache them in clients machines; create
private copies of coobjects to be handed over to clients
applications; send to a server the sequences of updates
made by applications to coobjects (after explicit save),
storing them temporarily in clients machines, if necessary;
establish communications between servers to propagate
coobjects updates to all replicating sites.

Coobjects implementations are responsible to: log updates
made by applications (in clients machines); store updates
delivered by system core (in servers machines); expose
logged and stored updates; order and apply known updates.
As said before, all these actions are under programmer
control, through an open (co)object framework provided in
DAgora. This framework will be presented in next section.

OBJECT FRAMEWORK
Updates management imposes a heavy burden on coobjects
implementation. To alleviate programmers from much of
the associated complexity we have defined an object
framework. This framework allows inexperienced
programmers to create coobjects relying on predefined
components (sub-objects) to impose consistency among
replicas, thus hiding its inherent complexity.

This object framework structures each coobject in five
disjoint components (objects), each one with a well-defined
interface. These components are the following: capsule,
data, attributes, log, and log-ordering (figure 5). Our open
implementation allows new components with different
semantics to be implemented, independently from each
other.

Capsule

Attributes
Log

Log-ordering

Data (specific for
each data type)

Figure 5 - DAgora object framework.

Capsule
Capsules aggregate the components of a coobject. They
implement the interface used by the system core to interact
with coobjects. Usually, a capsule just coordinates and
redirects invocations to the appropriated components.

Two capsule implementations are available. One, is the
normal capsule that aggregates an attributes object, a data
object, a log object and a log-ordering object. This is the
usual configuration of a coobject. The second one
aggregates an attributes object, two data objects, two log-
ordering objects and a log object. This second capsule is
used to implement coobjects that store two versions of the
data, independently from data type definitions. Our
scheduler application uses this capsule to store the tentative
and committed calendars.

Attributes
The attributes component is used to store general-purpose
information relative to the coobject and meta-information
relative to the replication process. Two implementations are
available: a simple and an extended one. The extended
implementation should be used with sequencer based
orderings. It stores information about sequencer identity,
and defines methods for its management. Simple
implementation should be used otherwise. These classes
may be extended to defined type-specific attributes.

Log
The log is used to log and store updates performed by users.
It has a dual function: in clients, it logs updates temporarily;
in servers, it stores updates received directly from clients
and/or from anti-entropy sessions. For each sequence of
updates logged or stored, log adds additional information
necessary to order updates. With this information it is also
possible to trace the updates precedence graph. This
information is used in our multi-user document editor to
execute version management.

Similar to the attributes component, two implementations
are available: a simple and an extended one. The extended
one should be used with sequencer based orderings. Both
log implementations execute compression while logging
updates if updates properties – commute and mask – are
available (masked updates are discarded).

Log-ordering
The log-ordering component is used to determine the order
by which updates should be applied to the coobject. It has a
dual function: in clients, it determines if updates should be
applied immediately to coobject’s private copy (usually,
updates are applied immediately to allow users to observe
the expected results from their actions); in servers, it orders
the application of stored updates. Log-ordering component
uses the information added by log to establish an order
among updates.

Currently, several log-ordering components are available,
namely: no order, causal order, total order based on a
sequencer replica, total causal order based on stability tests,
total causal order using undo/redo [15], total causal order
based on a sequencer replica. No order and causal order
impose almost no delay on update application, thus
enabling immediate commitment of updates in servers.
However, as it is often hard to guarantee replicas
consistency using these orderings, total order is often

 8

required. Several techniques were implemented to
guarantee total order.

When no sequencer is used (stability based techniques) to
commit updates, each server must gather enough
information about other servers to establish the total order.
This information is propagated during anti-entropy
sessions. Unfortunately, as it requires feedback from all
replicas, one simple disconnected replica may prevent any
update from being committed. To mitigate this problem, an
optimistic undo/redo implementation is available, where
all updates are applied immediately, being undone and
redone later, if a new update is received that should have
been ordered prior to an already executed one. This
implementation is used in our multi-user document editor,
thus allowing users to be aware of all known and executed
updates.

Alternatively, a sequencer based order ing is available,
allowing updates to be committed since the sequencer
replica is reachable (even in presence of multiple
disconnected replicas). With this implementation, a
coobject replica is responsible for defining the official
commit order for all received updates (which are
propagated as usual, during normal anti-entropy sessions).
Our scheduler application uses this ordering to commit
appointments.

Data
The data component implements the real data type being
created, with its associated state and operations. With
current log implementations, which are based simply on
updates ordering, operations are responsible for detecting
and solving conflicts among concurrent updates. Our
experience suggests that for most applications careful
operations definition associated with regular operations
preconditions check is enough (our scheduler application is
an example).

Some others may require more complex updates conflict
detection and resolution. Detecting the existence of
concurrent updates is easy, based on information added to
updates by the log component and the summaries of applied
updates (our multi-user document uses this facility). In the
unlikely situation in which the above facilities are not
enough, concurrent updates may be accessed from log to
determine existing conflicts and to execute update-specific
conflict resolution. The above characteristics allow very
flexible management of concurrent updates, although we
expect that most applications will not need to resort to all
those possibilities.

Using The Object Framework
To create a new coobject type, a programmer must define
the data component and select the desired components
implementations. This allows easy data-type construction,
through massive code reuse.

In figure 6, we present the code needed to implement the
coobject used in our scheduler application. SchedulerData
implements a simple scheduler object, as it would usually

be implemented. Two modifications are required: objects
must extend dagora.dscs.DagoraData and implement
java.io.Serializable (which requires no new method
definition); public methods that may modify the object state
must have a new qualifier – loggable. SchedulerCapsule
defines the components used in the coobject, and extends
the selected capsule.

public class SchedulerCapsule
extends dagora.dscs.TwoVersionsCapsule
implements java.io.Serializable

{
 public SchedulerCapsule() {
 attrib = new dagora.dscs.AttribSeq();
 logcore = new dagora.dscs.LogCoreSeqImpl();
 commitData = new SchedulerData();
 commitlogorder = new dagora.dscs.LogTotalSeqCausal(false);
 tentativeData = new SchedulerData();
 tentativelogorder = new dagora.dscs.LogNoOrder(true);
 }
}

public class SchedulerData
extends dagora.dscs.DagoraData
implements java.io.Serializable

{
 public Vector appointments(int year, int month, int day) {
 /* method code here * /
 }
 public loggable void insertReservation(ReservationEntry[] altRes) {
 /* method code here * /
 }
 public loggable void removeReservation(ReservationEntry res) {
 /* method code here * /
 }
}

Figure 6 – Scheduler coobject implementation.

Coobjects definitions are preprocessed to generate standard
Java code, which is later compiled using standard
development tools. Coobjects using undo/redo orderings are
required to define undo methods. Ordering information
associated with each update may be accessed by parameters
implicitly added to loggable methods.

STATUS AND FUTURE WORK
The implementation of the DAgora storage system has two
distinguishable (yet complementary) components: the
system core and the object framework. While system core is
a rigid component, the object framework requires the ability
to evolve dynamically (while system is running). Moreover,
as the system has been designed for large-scale settings,
heterogeneity is also a requirement. To fulfil the above
requirements we have decided to implement DAgora using
Java [31]. The security mechanisms available were an
additional motivation, enabling some control over coobjects
implementations – as coobjects execute on server machines
some security restrictions are necessary.

We have a complete implementation of the DAgora storage
system based on Java JDK 1.1. DAgora applications were
also implemented in Java (using Java JDK 1.1.2 and
Swing). We expect to allow our implemented applications

 9

to be tested from [12] using an adequate browser, as soon
as a web version of our client is implemented.

Such as other distributed systems, DAgora performance
depends on several factors, namely, the location of servers
and clients, the communication infrastructure and the
amount of data processed. Specifically related with DAgora
implementation, preliminary results [25] have shown that its
performance is highly influenced (and dominated) by the
Java object serialization process. To improve performance
we intend to investigate alternative methods to store objects
automatically. Nevertheless, we believe that system
enhanced functionality advantages overcome its
performance drawbacks (compared to traditional storage
systems).

Many potential work directions were revealed during the
course of our work, such as the determination of optimal
caching and anti-entropy policies, the introduction of
session guarantees and resource consumption restrictions to
coobjects, alternative access mechanism to large coobjects
based on partial replication or remote access. Other issues
that we intend to explore in the future include the creation
of generic notification mechanisms to provide users with
shared feedback of activities related with coobjects (log
component provides this information). Suitable access
control and security mechanisms must also be addressed.
Coordination among users is other issue that requires
further investigation in large-scale settings. However, the
next step in DAgora evolution will be the creation of new
applications and associated coobjects and components to
further refine our basic model. We are specially interested
in using the updates precedence graph to deal, automatic
and transparently from data objects, with concurrent
updates, either discarding conflicting updates, creating
multiple version, merging conflicting updates [21], or
executing updates transformations [7].

RELATED WORK
Several systems have been developed to manage data in
large-scale environments. Notably, database systems [4],
based on transactions, define a widely used and well-
understood model of concurrency control. Some systems
[20] have even introduced extensions to support
disconnected operation. However, as we have already
discussed, transactional techniques are not suitable for
asynchronous groupware.

Lotus Notes [16] is a replicated document database.
Documents have a record-like structure composed by typed
fields defined in forms. Notes architecture is composed by a
group of servers that replicate databases (sets of documents)
using epidemic techniques and by clients that cache
documents. Notes propagates fields values, handling
concurrent updates by creation of multiple versions of data
that must be manually merged. We believe that this
approach is rather inflexible and often inadequate, being
automatic conflict resolution preferable and often possible.

Coda [17] is a replicated file system with support for
disconnected clients. It also supports low bandwidth
networks and intermittent communication. While
disconnected, clients log all updates to the file system,
which are replayed on reconnection. System executes
automatic update conflict resolution for directories.
Application-specific programs can be provided for
automatic resolution of file updates conflicts. However,
lacking of update semantics – files are modified as
complete untyped byte streams – makes update merging
rather difficult and sometimes impossible. Concerning
Coda’s architecture, we believe that requiring clients to
synchronize all accessible server replicas imposes an
excessive overhead to clients on large-scale settings.

Ficus [11] is a replicated file system that uses similar
conflict resolution policies, but uses an epidemic scheme to
propagate updates among servers. The shortcomings
presented by the above-mentioned systems to handle
concurrent updates are the result of state propagation
strategy. Next we present two systems that use an update
propagation strategy: Bayou and Rover.

Bayou [32] is a replicated database system to support data-
sharing among mobile users, with an architecture similar to
Notes. Bayou updates (writes) include information to allow
generic automatic conflict detection and resolution through
dependency checks and merge procedures. Bayou data
presents two values: tentative and committed. A primary
replica scheme is used to fasten update commitment. Our
system allows emulation of Bayou’s main characteristics
through coobject definition. Moreover, as it allows specific
data types definition it does not impose data to fit the
available model, allowing more flexible and suitable
solutions – for instance, implementing our editor
applications with Bayou would have been rather
cumbersome.

Rover [14] combines relocatable dynamic objects (RDO)
and queued remote procedure calls (QRPC) to provide
information access for mobile clients. Each RDO has a
home server and may be imported by clients. While
imported, updates are logged and performed locally. When
the RDO is exported, logged updates are applied to the
replica at the home server. Resolution of detected conflicts
is achieved at server by calling type-specific methods.
QRPC are used to execute all communications between
clients and servers, allowing non-blocking RPCs even while
disconnected. We believe that our system is more suitable
for large-scale settings due to server replication (in
conjugation with client caching). The object framework
also allows easier data types definition and more flexible
handling of concurrent updates.

Several distributed object systems have been previously
developed and present some form of concurrent update
handling. Some of them [2] even present object frameworks
decomposing object operation. Some real-time
collaborative systems [7,21,27,28] also present concurrency
control mechanism to handle concurrent updates. However,

 10

these systems are usually real-time, designed for low
granularity objects with different requirements, and present
solutions unsuitable for asynchronous large-scale settings.

Iris [18] present an architecture for large-scale collaborative
editing. The associated storage system has many similar
design choices when compared to DAgora. However, it is
not a general-purpose data storage.

Sync [21,22], a framework for mobile collaborative
applications, present an interesting model of concurrent
update handling and object construction. However, we
believe that lack of server replication makes it less suitable
for large-scale settings.

CONCLUSIONS
The DAgora storage system is an object repository for
large-scale environments that include mobile computers.
Our architecture has been designed with the goal of
maximizing data availability. It combines two major
techniques: server replication and client caching. Servers
replicate volumes of coobjects with a read any/write any
model of data access. Coobjects are modified through
method invocation, and updates are propagated among
servers using an epidemic scheme requiring only pair-wise
occasional communications. Clients cache key coobjects to
allow users operation even while disconnected (and to
improve performance).

Although architecture is important to achieve availability,
experience has proven that usability of the system is largely
dependent on efficiency of concurrent updates handling - in
some systems, concurrent updates that can not be
automatically merged lead to normal access failure and thus
to a even lower availability. Thus, automatic conflict
resolution is not just desirable, it is necessary and
fundamental.

DAgora presents a set of characteristics that allows users to
implement a wide range of updates handling policies. First,
we use log propagation instead of state propagation. This
provides precise update information, allowing precise
conflict detection and update semantics usage. Second,
coobjects automatically add to each update enough
information that allows the precedence graph of updates to
be traced. This allows the precise determination of
concurrent work paths. Third, coobjects store updates
allowing users access. This enables very flexible handling
of concurrent updates, allowing updates transformation.

Moreover, DAgora provides an open object framework that
divides coobjects operation in several independent and
reusable components, thus alleviating programmers from
most of the inherent complexity associated with the above
characteristics. Common coobject creation can be reduced
almost to regular object implementation and selection of the
desired semantics for the other components.

Although DAgora characteristics enable very complex
updates handling, experience with implemented coobjects
indicates that most data types will require only simple (and
easy to implement) techniques of concurrent updates

merging. These techniques consists in: imposing an
adequate (usually total) order to update application; using
vector timestamps associated with each update to detect
concurrent updates; adding update-specific conflict
detection to each update code; adding update-specific
conflict resolution to each update code.

REFERENCES
1. R. Alonso, H. Korth Database system issues in nomadic

computing. In Proceedings of the ACM SIGMOD
Conference on the Management of Data, May 1993.

2. G. Brun-Cottan, M. Makpangou. Adaptable Replicated
Objects in Distributed Environments. INRIA Rapport de
recherche nº 2593, May 1995.

3. B. Coan, B. Oki, E. Kolodner. Limitations on Database
Availability when Networks Partition. In Proceedings
5th ACM Symposium on Principles of Distributed
Computing, August 1986.

4. S. Davidson, H. Garcia-Molina, D. Skeen. Consistency
in Partitioned Networks. ACM Computing Surveys, C-
31, 1982.

5. H. J. Domingos, J. Legatheaux Martins, J. Simão, N.
Preguiça. Coordination and Flexible Synchronicity in
Large Scale CSCW. In Proceedings CRIWG97, Madrid,
October 1997.

6. P. Dourish. The Parting of the Ways: Divergence, Data
Management and Collaborative Work. Proceeding of
the 4th European Conference on CSCW, 1995.

7. C. Ellis, S. Gibbs. Concurrency Control in Groupware
Systems. In Proceedings of the ACM SIGMOD
Conference on the Management of Data, June 1989.

8. C. Ellis, S. Gibbs, G. Rein. Groupware - Some Issues
and Experiences. Communications of the ACM,
34(1):38-58, January 1991.

9. R. Golding. A weak-consistency architecture for
distributed information services. Computing Systems,
5(4), 1992.

10. J. Grudin. Computer-Supported Cooperative Work:
History and Focus. IEEE Computer, May 1994.

11. R. Guy, J. Heidemann, W. Mak, T. Page Jr., G. Popek,
D. Rothmeier. Implementation of the Ficus Replicated
File System. In USENIX Conference Proceedings, June
1990.

12. http://dagora.di.fct.unl.pt
13. T. Imielinski, B. Badrinath. Mobile Wireless

Computing: Challenges in Data Management.
Communications of the ACM, 37(10), October 1994.

14. A. Joseph, A. DeLespinasse, J. Tauber, D. Gifford, M.
Kaashoek. Rover: A Toolkit for Mobile Information
Access. In Proceedings of the 15th ACM Symposium on
Operating Systems Principles, December 1995.

15. A. Karsenty, M. Beaudouin-Lafon. An algorithm for
distributed groupware applications. In Proceedings of
the 13th International Conference on Distributed
Computing Systems, May 1993.

 11

16. L. Kawell Jr., S. Beckhardt, T. Halvorsen, R. Ozzie, I.
Greif. Replicated Document Management in a Group
Communication System. In Proceedings of the 2nd ACM
Conference on CSCW, September 1988.

17. J. Kistler, M. Satyanarayanan. Disconnected Operation
in the Coda File System. ACM Transactions on
Computer Systems, 10(1), February 1992.

18. M. Koch. Design issues for a distributed multi-user
editor. Computer Supported Cooperative Work – An
International Journal, 3(3-4):359-378, 1995.

19. H. Korth, G. Speefle. Formal model of correctness
without serializability. In Proceedings of the ACM
SIGMOD Conference on the Management of Data,
1988.

20. B. Liskov, A. Adya, M. Castro, S. Ghemawat, R.
Gruber, U. Maheshwari, A. Myers, L.Shrira. Safe and
Efficient Sharing of Persistent Objects in Thor. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, June 1996.

21. J. Munson, P. Dewan. A Concurrency Control
Framework for Collaborative Systems. In Proceedings
of the 1996 ACM Conference on CSCW, November
1996.

22. J. Munson, P. Dewan. Sync: A Java Framework for
Mobile Collaborative Applications. IEEE Computer,
June 1997.

23. F. Pacull, A. Sandoz, A. Schiper. Duplex: A Distributed
Collaborative Editing Environment in Large Scale. In
Proceedings of the 1994 ACM Conference on CSCW,
October 1994.

24. K. Petersen, M. Spreitzer, D. Terry, M. Theimer, A.
Demers. Flexible Update Propagation for Weakly

Consistent Replication. In Proceedings of the 16th ACM
Symposium on Operating Systems Principles, 1997.

25. N. Preguiça. Repositório de Objectos de Suporte ao
Trabalho Cooperativo Assíncrono. MSc thesis, 1997 (in
portuguese).

26. W. Prinz, S. Kolvenbach. Support for Workflows in a
Ministerial Environment. In Proceedings of the 1996
ACM Conference on CSCW, November 1996.

27. M. Roseman, S. Greenberg. GroupKit: A Groupware
Toolkit for Building Real-Time Conferencing
Applications. In Proceedings of the 1992 ACM
Conference on CSCW, 1992.

28. C. Schuckmann, L. Kirchner, J. Schummer, J. Haake.
Designing Object-Oriented Groupware with COAST. In
Proceedings of the 1996 ACM Conference on CSCW,
1996.

29. P. Schwartz, A. Spector. Synchronizing shared abstract
types. ACM Transactions on Computer Systems, August
1984.

30. J. Simão, J. Legatheaux Martins, H. J. Domingos, N.
Preguiça. Supporting Synchronous Groupware with Peer
Object-Groups. In Proceedings of 3rd COOTS, June
1997.

31. Sun Microsystems. The Java Language Environment –
A White Paper. October 1995.

32. D. Terry, M. Theimer, K. Petersen, A. Demers, M.
Spreitzer, C. Hauser. Managing Update Conflicts in
Bayou, a Weakly Connected Replicated Storage System.
In Proceedings of the 15th ACM Symposium on
Operating Systems Principles, December 1995.

