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ABSTRACT 
In this technical report we describe a storage system aimed 
on supporting collaborative applications in large-scale 
environments that include mobile computers. To maximize 
availability, it uses weakly consistent server replication and 
client caching with a read any/write any model of data 
access. To allow easy management of concurrent updates it 
provides an object framework that isolates the programmer 
from the inherent complexity of data replication through 
code reuse. Type and situation specific conflict detection 
and resolution are implemented based on support provided 
by the system and the object framework. 

Keywords 
Large-scale asynchronous groupware, mobile computing, 
replicated storage system, log propagation, object 
framework. 

INTRODUCTION 
The widespread use of computer networks opened new 
opportunities for collaboration among people on different 
geographical places. Several general-purpose Internet-based 
services have been developed and are in use, notably the 
Internet news and mail systems. However, enhanced 
support for groups of users seeking a specific common 
objective require specialized applications such as multi-user 
editing tools, cooperative schedulers and calendars, 
conferencing systems, workflow systems and others [8,10]. 

While some of these applications are synchronous, 
requiring only some sort of group-messaging support [30], 
most of them rely heavily on a storage system to enable 
information sharing, distribution and composition. Some 
support systems have been implemented, either for general 
use (e.g., Lotus Notes [16]), for some specific domain (e.g., 
LinkWorks [26] for workflow) or for some specific 
applications (e.g., Iris[18]).   

The increasing popularity of mobile and disconnected 
computing poses new requirements on existing support 
systems [1,13]. It also opens opportunities for new forms of 
work – cooperative telework – which in turn exacerbates 
the need for (primarily asynchronous) collaborative 
applications. 

In this technical report we present a replicated object 
repository aimed on supporting large-scale heterogeneous 
computing  systems including mobile and disconnected 
computers. This system can be used as a basis to build 
asynchronous cooperative applications for distributed 
groups, managing the inherent complexity associated with 
data replication and concurrent updates merging. 

Our storage system, named DAgora, is based on groups of 
servers that replicate sets of related objects with a read any 
/ write any model of data access in order to maximize data 
availability. A client caching mechanism is also provided to 
cope with mobile and disconnected computing. 

DAgora also provides an object framework that allows new 
data types to be composed from reusable predefined 
components and regular object classes, thus hiding from 
application programmers the complexity associated with 
data distribution. Different policies exist to apply 
concurrently made updates to different replicas, thus 
allowing each data type to incur only in specific overhead. 
Flexibility in concurrent updates handling is achieved by 
our object framework data types composition and DAgora 
open implementation, that allows new policies to be defined 
as required. 

In the remainder of this technical report we present the 
requirements we believe essential to support distributed 
asynchronous groupware and the design choices we have 
made to fulfil them, some applications we have 
implemented to evaluate and demonstrate DAgora 
flexibility, the DAgora repository architecture and the 
associated object framework, status of the DAgora 
prototype and intended future work, comparison with 
related work, and finally some conclusions. 

REQUIREMENTS AND DESIGN CHOICES 
Consider three different and well-understood asynchronous 
collaborative applications: a conferencing system, a multi-
user editing tool and a group scheduler. All these 
applications require some sort of data repository to manage 
their shared data. Due to scale, mobility and disconnection, 
traditional concurrency control methods are unsuitable. 
Moreover, we believe that ideally all these applications 
should allow every user to modify any data concurrently 
without any restriction (besides coordination and access 
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control mechanisms). Concurrently made updates should be 
automatically merged in a type- and situation-specific way. 
Bellow we present some operational scenarios that illustrate 
these claims. 

In a conferencing system, any user should be allowed to 
reply to a previously existing statement. All concurrent 
replies should be displayed in a consistent way across 
different conferencing replicas. In a multi-user editing tool, 
different users should be able to modify the same structured 
document. All modifications should be reflected in the final 
document, creating versions of document elements (e.g. 
chapter, sections) if concurrent updates to the same 
elements have been produced. In a group scheduler 
application, users should be allowed to require new 
appointments, which must be considered tentative [32] until 
being committed by some form of automatic global 
agreement. 

From the above scenarios we note that in asynchronous 
applications users cooperate by accessing and modifying (or 
applying operation to modify) some shared data. Thus, the 
storage system should always be a central piece of any 
support system. Two major and interrelated problems 
should be tackled: high-availability of data and concurrent 
updates handling. For some applications other supports 
should also be provided, such as a notification and a 
coordination sub-systems [5]. In this technical report we 
present exclusively the storage system support. 

High-availability 
In large-scale settings, connectivity among system 
components is often limited (due to low bandwidth and 
expensive connections), and at times, even unavailable (due 
to network and/or machine failures and disconnected 
computers). Since a single storage site may not be 
permanently reachable from some client machine, 
replication is required in order to provide high-availability 
of service. To avoid low write availability in presence of 
partitioned networks [3] and due to intrinsic groupware 
properties, weak consistency of replicated data is desirable. 

For the above reasons, we have adopted a read any / write 
any model, in which updates can be applied to any replica 
independently. We have also adopted an epidemic scheme 
of update propagation among servers [24], where every 
server eventually receives all updates from every other, 
either directly or indirectly. This scheme requires only 
occasional pair-wise communication between computers, 
thus taking into consideration connectivity constraints. 
Some consistency across replicas will eventually be reached 
(in absence of new updates) as all updates are propagated to 
all replicas. 

Mobile computers, with its inherent reduced connectivity, 
only exacerbate the above constraints [1,13]. Moreover, the 
reduced hardware resources available (as presented for 
instance by personal digital assistants – PDAs), often make 
impossible and/or undesirable for clients to manage a full 
unit of replication (that usually corresponds to large 

amounts of data). By these reasons, DAgora has also 
adopted a client caching mechanism [17] that allows users 
in disconnected machines to continue their work, keeping 
copies only of key data. 

Concurrent Updates Handling 
Experience and prior research have proven that one of the 
main issues involved in the management of data in large-
scale and mobile computing environments is the handling of 
uncoordinated/independent concurrent modifications. In 
database systems, where it has been most actively studied, 
concurrency control is usually achieved through 
transactions [4]. Transactions may be implemented either 
using pessimistic (e.g. locks) or optimistic (e.g. timestamps) 
techniques. While using optimistic techniques, several 
transactions are allowed to proceed concurrently until 
commit time, being aborted if ACID properties have been 
violated. As ACID properties in conjunction with 
conventional reliance on primitive read/write semantics are 
often too restrictive, several techniques have been proposed 
in order to reduce high abort rates, either exploiting type 
[29] or application semantics [19]. 

Several (primarily synchronous) groupware systems have 
adopted locking mechanisms [27] and optimistic 
transactions [28]. However, we believe that these 
mechanisms are unsuitable for asynchronous groupware due 
to two main reasons: 

• In presence of partitioned networks and disconnected 
computers strong locking mechanisms impose a too 
restrictive data access model (locks held by some 
disconnected computer may avoid data access for too 
long periods). On the other hand, weak locking 
mechanisms usually lead to abortion. 

• Updates granularity in asynchronous applications is 
usually large, representing a semantically consistent unit 
(e.g. a new version of a chapter). For this reason, 
abortion of such amounts of work is often unacceptable. 

For the above reasons, we believe that unrestricted 
concurrency should be the rule, i.e., no restrictions should 
be imposed to users work (besides coordination and access 
control mechanisms). Additionally, some merging 
mechanism must be devised to allow automatic merging of 
the multiple parallel activity streams [6], taking into 
account all concurrently made updates (collaboration 
purpose is contribution merging by definition). 

It seems incontestable that, in absence of conflicting 
concurrent updates, automatic merge should be done. 
However, the definition and detection of conflicting updates 
is not trivial. Moreover, whilst there are many actions that 
can be taken in presence of conflicting updates, the 
adequate one seems to be type and situation specific. 
Flexibility should be a key criteria of the mechanisms 
needed to handle these updates. 

Two models exists to store and propagate modifications [9]: 
state propagation – where each update is immediately 
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applied to data and its effects transmitted; log propagation – 
where each update, besides being applied to data, is stored 
in a log which is used to propagate modifications. 

State propagation main advantages are: simpler 
implementation because no log management mechanism is 
required; and straightforward implementation for a 
replicated storage system based on a get/put model of 
access (the common use of file systems). However, log 
propagation has also several advantages, namely: it enables 
easy merging of concurrent updates (in absence of conflicts, 
merging concurrent updates is reduced to applying all 
updates sequentially); it enables precise conflict detection, 
based on precise update definition (state propagation often 
leads to false conflicts detection since it is hard to exactly 
determine the changes made); and enables flexible conflict 
resolution by update manipulation (which is allowed by 
knowledge about operations semantics).  Moreover, state 
propagation may be regarded as a special case of log 
propagation. Finally, log propagation provides the base 
(information) support to implement notifications on update 
operations. 

Several systems, like Coda [17], Ficus [11]and Lotus Notes 
[16], have previously used state propagation. However, 
experience with those systems demonstrates the complexity 
of concurrent updates merging based on state propagation, 
mainly due to mismatching manipulation/structuring 
granularities and lack of update semantics knowledge. For 
instance, in Lotus Notes, this complexity leads to a single 
mechanism of update merging – concurrent versions of the 
same fields are reflected in the final document as different 
versions (original implementation of Notes consistently 
chose one version, discarding others). While this strategy is 
adequate for several applications, it poses (unsolvable) 
problems to others. 

Mismatching manipulation/structuring granularities are 
illustrated by the example presented in figure 1. In this 
example, each document would usually be stored as a single 
file or Notes rich-text field, but users will usually modify 
only part of the document. Thus, to produce the expected 
document not trivial processing would be required to detect 
differences between different document versions. 
Moreover, based only on middle versions of the document, 
i.e., without any further information, it is impossible to 
determine which versions of the chapters correspond to the 
new ones, thus making it impossible to automatically 
produce the expected document. 

Due to the above reasons, DAgora object repository is 
based on log propagation, like Bayou [32] and Rover [14]. 
However, unlike Bayou that presents a relational database 
data model, Rover and DAgora allow generic object 
definition. Thus, they enable definition of complex and 
suitable data types, without imposing data to fit the 
available data model. Restricting all applications to a single 
data model lead to unnecessary and complex exercises of 
data manipulation, trying to squeeze data structure to the 

available model, which sometimes turns out to be an 
unsolvable situation. 

....
Chapter 2
Old chapter 2
....
Chapter 5
Old chapter 5
....
Chapter 7
Old chapter 7
….

....
Chapter 2
New chapter 2
....
Chapter 5
Old chapter 5
....
Chapter 7
New chapter 7

....
Chapter 2
Old chapter 2
....
Chapter 5
New chapter 5
....
Chapter 7
New chapter 7

....
Chapter 2
New chapter 2
....
Chapter 5
New chapter 5
....
Chapter 7
New chapter 7 – version 1
New chapter 7 – version 2

 

Figure 1 – Expected evolution of a concurrent 
editing session. The middle versions represent two 
concurrent modifications to the same document.  

Moreover, and unlike Rover, DAgora presents an object 
framework that enables easy and flexible object 
construction. This open object framework is constituted by 
several components that manage the inherent complexity 
associated with data types implementations (notably, 
updates logging and ordering), thus restricting work 
involved in data type construction almost to common object 
definition. For each of these components several predefined 
semantics are available and others can be defined, thus 
allowing data types to exhibit different updates management 
policies. For this reason, and unlike other previous systems, 
this framework enables each data type to incur only on 
specific overhead dependent on specific behavior. 

EXAMPLE APPLICATIONS 
To demonstrate system’s operation and to evaluate its 
requirements and mechanisms, we have developed two 
applications: a scheduler and a multi-user document editor. 
We believe that these application, although very simple and 
implementing only a subset of functionalities required for a 
production-level version, highlight the storage system and 
concurrent update management requirements for different 
types of applications. 

Scheduler 
The scheduler application enables users to reserve 
resources, such as meeting rooms, projectors, etc. At most 
one reservation may be granted for the same period of time. 
This scheduler is only intended for use after people have 
decided the set of acceptable periods of time for which they 
want to reserve the given resource. It does not help people 
to agree, for instance, in a mutual agreeable period of time 
for a meeting. 

Users interact with a graphical interface, presented in figure 
2, observing which periods are already reserved. Two kinds 
of reservations exist: committed and tentative. While for 
committed reservations displayed times are unchangeable 
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(unless reservation is deleted), for tentative reservations 
displayed times are dependent on the existence of other 
reservations, yet unknown, that reserve the same times. 

 

Figure 2 – Scheduler application. Main window 
presents known reservations. Reservation window is 
used to set a new appointment. 

Users make their reservations filling a form indicating the 
set of alternative times for which they intend to reserve the 
resource and giving a brief description of the reason (for a 
meeting room, it may be the description of the meeting that 
will take place). 

The underlying storage system of the scheduler application 
should transparently support the existence of tentative and 
committed versions of the same resource calendars. 
Moreover, it should be able to commit new appointments as 
soon as possible – in presence of mobile computers, this 
calls for a primary replica calendar. Although different 
calendar replicas may, in a given moment, present different 
values (due to a different set of known and committed 
updates), these values should be coherent – a committed 
appointment should be scheduled for the same period of 
time in all replicas. 

Multi-user Document Editor  
The editor application allows users to produce documents 
cooperatively. Users may modify documents without any 
restriction, though we expect coordinated users to modify 
different parts of the same documents. Although documents 
are stored as single data units in our repository, they are 
structured in independent components, as proposed by 
several collaborative editing tools [18,23].  

Two base components are used to build documents: 
containers and leaves. Containers are sequences of other 
containers and/or leaves and define documents hierarchic 
structures. Leaves represent atomic units of data that may 
have multiple versions and may be of different types. A 
document is a hierarchical composition of these 
components, representing the document structure. 

For instance, a LaTeX document has several containers and 
several leaf types, as illustrated in figure 3. Each leaf 

component defines its type and default associated editor to 
be used. Each container defines its initial composition and 
possible new components. 

Currently a small set of document types is implemented, 
including a generic hierarchic structured document, a 
LaTeX document and a Java source document. To allow the 
same document editor to manipulate different documents 
types (based on the same base components), reflection 
information is provided in the derived components. Export 
and import functions allow interoperability with file system 
based tools. 

 

Figure 3 – DAgora editing tool with a LaTeX 
document. 

In figure 3 we present the edition of a LaTeX document. 
The editor window is divided in three areas: structure, 
version and editing areas. This allows easy document 
structure and leaf version navigation 

Concurrent updates to document structure are merged 
sequentially applying both modifications – the rationale 
being that if two users (for instance) add a new chapter, 
they are probably adding two different chapters. When 
users intend to add the same chapter, they should merge 
them later. Deletion is handled through a pair of operations 
mark as deleted / discard in order to avoid delete / modify 
conflicts and to guarantee that no component of a document 
is deleted while is considered of interest by some user. 
Updates to same leaf elements are merged through version 
creation. 

To allow the outlined concurrent updates handling policy, 
the repository should be able to order all updates – so that 
all replicas could evolve coherently. However, all updates 
known in each replica should be immediately applied to 
maximize awareness about users contributions. Moreover, 
the storage system should provide a mechanism to detect 
concurrently made updates so that, version creation could 
be correctly handled.  

As can be seen from these two examples, the programmer 
should be able to select very flexibly the way concurrent 
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updates are handled in each case. Besides the above-
mentioned requirements, the need for high-availability is 
implicit in both applications. Users must be able to access 
the same data objects, even in presence of network and/or 
server failures. When disconnected, users must be able to 
access and modify data objects. Updates will be 
reintegrated as soon as possible (i.e., when user reconnects 
to system). 

In the next section we will present the structure of the 
repository and the way it operates. Later we will present the 
object framework allowing flexible concurrency handling. 

REPOSITORY STRUCTURE / OPERATION 
DAgora storage system is a distributed object repository 
based on a client / replicated server architecture. DAgora 
manages objects, known as coobjects (from collaborative 
objects). Coobjects are organized in sets, known as 
volumes. Each coobject belongs to a single volume and has 
a unique identifier relative to the volume. Each volume 
represents a collaborative workspace, containing coobjects 
relative to a given workgroup and/or cooperative project. 

DAgora applications run on client machines, allowing users 
to collaborate through concurrent modification of the same 
coobjects. Coobjects may be rather complex (such as a 
document or a scheduler calendar) and be implemented as 
an arbitrary set of regular objects. Applications employ a 
get / modify locally / put changes model of data access: 
they obtain private and local copies of coobjects, modify 
them by usual methods invocations, and finally explicitly 
export updates made. 

DAgora architecture is depicted in figure 4. Servers 
replicate volumes of coobjects in order to guarantee high-
availability in presence of networks and/or server failures. 
Clients cache key coobjects so that users may continue their 
work, even while disconnected. 

Server

Vol.
Foo

Vol.
Bar

Vol.
Baz

Server

Vol.
BarServer

Vol.
Baz

Server

Vol.
Bar

Vol.
Baz

Client

Baz.Fum

Front-End

Application

Baz.Fum
anti-entropy

CoObjects
anti-entropy

anti-entropy

anti-entropy
updates

 

Figure 4 - DAgora object repository architecture.  

When an application requests a given coobject, if it is not 
present in client cache, it is fetched from a server. A private 
copy of the coobject is created and handed over to the 
application. Application uses the coobject as a regular 
object, invoking its methods to query and modify coobject’s 
state. Finally, users may record explicitly their changes (or 
not). Updates made by applications are registered as 

sequences of methods invocations (logged internally and 
transparently by coobjects). These sequences are stored in 
stable storage at clients machines, and later sent to a server. 

As outlined, clients are responsible to fulfil users requests. 
To this end, they manage a local cache, in order to 
guarantee that coobjects requested by applications will be 
mostly available. Coobjects are obtained from any server 
that replicates them. Clients make their best effort to 
guarantee that copies handed over to application are up-to-
date with some server replica. 

Clients also manage a stable log of invocations to volumes. 
These invocations represent sequences of updates 
performed by users to coobjects. Updates are forwarded to 
servers that replicate each volume as possible. This 
mechanism is similar to a deferred RPC (with no return 
parameters). 

Upon arrival of sequences of updates from a client machine, 
the server hands them over to the coobjects local replica. 
Coobjects implementations are responsible for storing and 
applying them. Different coobjects will apply updates 
obeying different constraints, usually guaranteeing that all 
replicas will eventually converge (as all updates are 
propagated to all replicas). Servers establish pair-wise 
occasional communications to propagate newly received 
updates, which are obtained from and delivered to coobjects 
local replicas. As a consequence of this mode of operation, 
replicas of the same coobject may differ, in each moment, 
in different servers, but they will eventually converge. 

As outlined, servers, besides interacting with clients, are 
responsible to manage volume replication. Each volume is 
replicated by a variable set of servers. DAgora servers 
propagate updates among themselves, synchronizing their 
coobjects replicas, during pair-wise communications, 
known as anti-entropy sessions [24]. The two servers 
involved in a session exchange updates so that when they 
finish, both agree on the set of updates known, for each 
coobject. Epidemic algorithms theory guarantees that as 
long as servers and communication paths form a connected 
graph (i.e., as long as servers are not permanently 
partitioned or failed) each update will eventually reach all 
servers. In absence of new updates performed by clients, all 
servers will eventually know all updates and hold the same 
data. 

DAgora protocol [25] maintains and exchanges summaries 
of updates seen in each server for each coobject 
(represented as timevectors) in order to minimize updates 
exchanged during anti-entropy sessions. Additional 
acknowledgment summaries are used to purge updates from 
coobjects logs. DAgora protocol enables anti-entropy 
sessions to occur over multiple transports, including 
asynchronous methods of communications, such as e-mail. 
Thus, it allows servers lodged in mobile computers to 
synchronize with each other without need for direct 
connections between them. 
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The group of servers that replicate each volume may vary as 
a result of users (system administrators) explicit orders. To 
this end, DAgora uses a well-known coobject in each 
volume to track and propagate volume membership 
changes. Join and leave protocols are light-weighted 
imposing communication with only one server. Membership 
changes are propagated during usual anti-entropy sessions. 

In order to promote tailorability and flexibility we have 
made a clear division of responsibilities between the system 
core (stable and unmodifiable) and the coobjects 
implementations (which are under programmer control) 
System core is responsible to: fetch copies of coobjects 
from servers and cache them in clients machines; create 
private copies of coobjects to be handed over to clients 
applications; send to a server the sequences of updates 
made by applications to coobjects (after explicit save), 
storing them temporarily in clients machines, if necessary; 
establish communications between servers to propagate 
coobjects updates to all replicating sites. 

Coobjects implementations are responsible to: log updates 
made by applications (in clients machines); store updates 
delivered by system core (in servers machines); expose 
logged and stored updates; order and apply known updates. 
As said before, all these actions are under programmer 
control, through an open (co)object framework provided in 
DAgora. This framework will be presented in next section. 

OBJECT FRAMEWORK 
Updates management imposes a heavy burden on coobjects 
implementation. To alleviate programmers from much of 
the associated complexity we have defined an object 
framework. This framework allows inexperienced 
programmers to create coobjects relying on predefined 
components (sub-objects) to impose consistency among 
replicas, thus hiding its inherent complexity. 

This object framework structures each coobject in five 
disjoint components (objects), each one with a well-defined 
interface. These components are the following: capsule, 
data, attributes, log, and log-ordering (figure 5). Our open 
implementation allows new components with different 
semantics to be implemented, independently from each 
other. 

Capsule

Attributes
Log

Log-ordering

Data (specific for
each data type)

 

Figure 5 - DAgora object framework.  

Capsule 
Capsules aggregate the components of a coobject. They 
implement the interface used by the system core to interact 
with coobjects. Usually, a capsule just coordinates and 
redirects invocations to the appropriated components. 

Two capsule implementations are available. One, is the 
normal capsule that aggregates an attributes object, a data 
object, a log object and a log-ordering object. This is the 
usual configuration of a coobject. The second one 
aggregates an attributes object, two data objects, two log-
ordering objects and a log object. This second capsule is 
used to implement coobjects that store two versions of the 
data, independently from data type definitions. Our 
scheduler application uses this capsule to store the tentative 
and committed calendars. 

Attributes 
The attributes component is used to store general-purpose 
information relative to the coobject and meta-information 
relative to the replication process. Two implementations are 
available: a simple and an extended one. The extended 
implementation should be used with sequencer based 
orderings. It stores information about sequencer identity, 
and defines methods for its management. Simple 
implementation should be used otherwise. These classes 
may be extended to defined type-specific attributes.  

Log 
The log is used to log and store updates performed by users. 
It has a dual function: in clients, it logs updates temporarily; 
in servers, it stores updates received directly from clients 
and/or from anti-entropy sessions. For each sequence of 
updates logged or stored, log adds additional information 
necessary to order updates. With this information it is also 
possible to trace the updates precedence graph. This 
information is used in our multi-user document editor to 
execute version management. 

Similar to the attributes component, two implementations 
are available: a simple and an extended one. The extended 
one should be used with sequencer based orderings. Both 
log implementations execute compression while logging 
updates if updates properties – commute and mask – are 
available (masked updates are discarded). 

Log-ordering 
The log-ordering component is used to determine the order 
by which updates should be applied to the coobject. It has a 
dual function: in clients, it determines if updates should be 
applied immediately to coobject’s private copy (usually, 
updates are applied immediately to allow users to observe 
the expected results from their actions); in servers, it orders 
the application of stored updates. Log-ordering component 
uses the information added by log to establish an order 
among updates. 

Currently, several log-ordering components are available, 
namely: no order, causal order, total order based on a 
sequencer replica, total causal order based on stability tests, 
total causal order using undo/redo [15], total causal order 
based on a sequencer replica. No order  and causal order  
impose almost no delay on update application, thus 
enabling immediate commitment of updates in servers. 
However, as it is often hard to guarantee replicas 
consistency using these orderings, total order  is often 
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required. Several techniques were implemented to 
guarantee total order. 

When no sequencer is used (stability based techniques) to 
commit updates, each server must gather enough 
information about other servers to establish the total order. 
This information is propagated during anti-entropy 
sessions. Unfortunately, as it requires feedback from all 
replicas, one simple disconnected replica may prevent any 
update from being committed. To mitigate this problem, an 
optimistic undo/redo implementation is available, where 
all updates are applied immediately, being undone and 
redone later, if a new update is received that should have 
been ordered prior to an already executed one. This 
implementation is used in our multi-user document editor, 
thus allowing users to be aware of all known and executed 
updates. 

Alternatively, a sequencer  based order ing is available, 
allowing updates to be committed since the sequencer 
replica is reachable (even in presence of multiple 
disconnected replicas). With this implementation, a 
coobject replica is responsible for defining the official 
commit order for all received updates (which are 
propagated as usual, during normal anti-entropy sessions). 
Our scheduler application uses this ordering to commit 
appointments. 

Data 
The data component implements the real data type being 
created, with its associated state and operations. With 
current log implementations, which are based simply on 
updates ordering, operations are responsible for detecting 
and solving conflicts among concurrent updates. Our 
experience suggests that for most applications careful 
operations definition associated with regular operations 
preconditions check is enough (our scheduler application is 
an example). 

Some others may require more complex updates conflict 
detection and resolution. Detecting the existence of 
concurrent updates is easy, based on information added to 
updates by the log component and the summaries of applied 
updates (our multi-user document uses this facility). In the 
unlikely situation in which the above facilities are not 
enough, concurrent updates may be accessed from log to 
determine existing conflicts and to execute update-specific 
conflict resolution. The above characteristics allow very 
flexible management of concurrent updates, although we 
expect that most applications will not need to resort to all 
those possibilities. 

Using The Object Framework 
To create a new coobject type, a programmer must define 
the data component and select the desired components 
implementations. This allows easy data-type construction, 
through massive code reuse. 

In figure 6, we present the code needed to implement the 
coobject used in our scheduler application. SchedulerData 
implements a simple scheduler object, as it would usually 

be implemented. Two modifications are required: objects 
must extend dagora.dscs.DagoraData and implement 
java.io.Serializable (which requires no new method 
definition); public methods that may modify the object state 
must have a new qualifier – loggable. SchedulerCapsule 
defines the components used in the coobject, and extends 
the selected capsule. 

public class SchedulerCapsule
extends dagora.dscs.TwoVersionsCapsule
implements java.io.Serializable

{
      public SchedulerCapsule() {
            attrib = new dagora.dscs.AttribSeq();
            logcore = new dagora.dscs.LogCoreSeqImpl();
            commitData = new SchedulerData();
            commitlogorder = new dagora.dscs.LogTotalSeqCausal( false);
            tentativeData = new SchedulerData();
            tentativelogorder = new dagora.dscs.LogNoOrder( true);
      }
}

public class SchedulerData
extends dagora.dscs.DagoraData
implements java.io.Serializable

{
      public Vector appointments( int year, int month, int day) {
            /*  method code here * /
      }
      public loggable void insertReservation( ReservationEntry[] altRes) {
            /*  method code here * /
      }
      public loggable void removeReservation( ReservationEntry res) {
            /*  method code here * /
      }
}  

Figure 6 – Scheduler coobject implementation. 

Coobjects definitions are preprocessed to generate standard 
Java code, which is later compiled using standard 
development tools. Coobjects using undo/redo orderings are 
required to define undo methods. Ordering information 
associated with each update may be accessed by parameters 
implicitly added to loggable methods. 

STATUS AND FUTURE WORK 
The implementation of the DAgora storage system has two 
distinguishable (yet complementary) components: the 
system core and the object framework. While system core is 
a rigid component, the object framework requires the ability 
to evolve dynamically (while system is running). Moreover, 
as the system has been designed for large-scale settings, 
heterogeneity is also a requirement. To fulfil the above 
requirements we have decided to implement DAgora using 
Java [31]. The security mechanisms available were an 
additional motivation, enabling some control over coobjects 
implementations – as coobjects execute on server machines 
some security restrictions are necessary. 

We have a complete implementation of the DAgora storage 
system based on Java JDK 1.1. DAgora applications were 
also implemented in Java (using Java JDK 1.1.2 and 
Swing). We expect to allow our implemented applications 
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to be tested from [12] using an adequate browser, as soon 
as a web version of our client is implemented. 

Such as other distributed systems, DAgora performance 
depends on several factors, namely, the location of servers 
and clients, the communication infrastructure and the 
amount of data processed. Specifically related with DAgora 
implementation, preliminary results [25] have shown that its 
performance is highly influenced (and dominated) by the 
Java object serialization process. To improve performance 
we intend to investigate alternative methods to store objects 
automatically. Nevertheless, we believe that system 
enhanced functionality advantages overcome its 
performance drawbacks (compared to traditional storage 
systems). 

Many potential work directions were revealed during the 
course of our work, such as the determination of optimal 
caching and anti-entropy policies, the introduction of 
session guarantees and resource consumption restrictions to 
coobjects, alternative access mechanism to large coobjects 
based on partial replication or remote access. Other issues 
that we intend to explore in the future include the creation 
of generic notification mechanisms to provide users with 
shared feedback of activities related with coobjects (log 
component provides this information). Suitable access 
control and security mechanisms must also be addressed. 
Coordination among users is other issue that requires 
further investigation in large-scale settings. However, the 
next step in DAgora evolution will be the creation of new 
applications and associated coobjects and components to 
further refine our basic model. We are specially interested 
in using the updates precedence graph to deal, automatic 
and transparently from data objects, with concurrent 
updates, either discarding conflicting updates, creating 
multiple version, merging conflicting updates [21], or 
executing updates transformations [7]. 

RELATED WORK 
Several systems have been developed to manage data in 
large-scale environments. Notably, database systems [4], 
based on transactions, define a widely used and well-
understood model of concurrency control. Some systems 
[20] have even introduced extensions to support 
disconnected operation. However, as we have already 
discussed, transactional techniques are not suitable for 
asynchronous groupware. 

Lotus Notes [16] is a replicated document database. 
Documents have a record-like structure composed by typed 
fields defined in forms. Notes architecture is composed by a 
group of servers that replicate databases (sets of documents) 
using epidemic techniques and by clients that cache 
documents. Notes propagates fields values, handling 
concurrent updates by creation of multiple versions of data 
that must be manually merged. We believe that this 
approach is rather inflexible and often inadequate, being 
automatic conflict resolution preferable and often possible. 

Coda [17] is a replicated file system with support for 
disconnected clients. It also supports low bandwidth 
networks and intermittent communication. While 
disconnected, clients log all updates to the file system, 
which are replayed on reconnection. System executes 
automatic update conflict resolution for directories. 
Application-specific programs can be provided for 
automatic resolution of file updates conflicts. However, 
lacking of update semantics – files are modified as 
complete untyped byte streams – makes update merging 
rather difficult and sometimes impossible. Concerning 
Coda’s architecture, we believe that requiring clients to 
synchronize all accessible server replicas imposes an 
excessive overhead to clients on large-scale settings. 

Ficus [11] is a replicated file system that uses similar 
conflict resolution policies, but uses an epidemic scheme to 
propagate updates among servers. The shortcomings 
presented by the above-mentioned systems to handle 
concurrent updates are the result of state propagation 
strategy. Next we present two systems that use an update 
propagation strategy: Bayou and Rover. 

Bayou [32] is a replicated database system to support data-
sharing among mobile users, with an architecture similar to 
Notes. Bayou updates (writes) include information to allow 
generic automatic conflict detection and resolution through 
dependency checks and merge procedures. Bayou data 
presents two values: tentative and committed. A primary 
replica scheme is used to fasten update commitment. Our 
system allows emulation of Bayou’s main characteristics 
through coobject definition. Moreover, as it allows specific 
data types definition it does not impose data to fit the 
available model, allowing more flexible and suitable 
solutions – for instance, implementing our editor 
applications with Bayou would have been rather 
cumbersome. 

Rover [14] combines relocatable dynamic objects (RDO) 
and queued remote procedure calls (QRPC) to provide 
information access for mobile clients. Each RDO has a 
home server and may be imported by clients. While 
imported, updates are logged and performed locally. When 
the RDO is exported, logged updates are applied to the 
replica at the home server. Resolution of detected conflicts 
is achieved at server by calling type-specific methods. 
QRPC are used to execute all communications between 
clients and servers, allowing non-blocking RPCs even while 
disconnected. We believe that our system is more suitable 
for large-scale settings due to server replication (in 
conjugation with client caching). The object framework 
also allows easier data types definition and more flexible 
handling of concurrent updates. 

Several distributed object systems have been previously 
developed and present some form of concurrent update 
handling. Some of them [2] even present object frameworks 
decomposing object operation. Some real-time 
collaborative systems [7,21,27,28] also present concurrency 
control mechanism to handle concurrent updates. However, 
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these systems are usually real-time, designed for low 
granularity objects with different requirements, and present 
solutions unsuitable for asynchronous large-scale settings.  

Iris [18] present an architecture for large-scale collaborative 
editing. The associated storage system has many similar 
design choices when compared to DAgora. However, it is 
not a general-purpose data storage. 

Sync [21,22], a framework for mobile collaborative 
applications, present an interesting model of concurrent 
update handling and object construction. However, we 
believe that lack of server replication makes it less suitable 
for large-scale settings. 

CONCLUSIONS 
The DAgora storage system is an object repository for 
large-scale environments that include mobile computers. 
Our architecture has been designed with the goal of 
maximizing data availability. It combines two major 
techniques: server replication and client caching. Servers 
replicate volumes of coobjects with a read any/write any 
model of data access. Coobjects are modified through 
method invocation, and updates are propagated among 
servers using an epidemic scheme requiring only pair-wise 
occasional communications. Clients cache key coobjects to 
allow users operation even while disconnected (and to 
improve performance). 

Although architecture is important to achieve availability, 
experience has proven that usability of the system is largely 
dependent on efficiency of concurrent updates handling - in 
some systems, concurrent updates that can not be 
automatically merged lead to normal access failure and thus 
to a even lower availability. Thus, automatic conflict 
resolution is not just desirable, it is necessary and 
fundamental.  

DAgora presents a set of characteristics that allows users to 
implement a wide range of updates handling policies. First, 
we use log propagation instead of state propagation. This 
provides precise update information, allowing precise 
conflict detection and update semantics usage. Second, 
coobjects automatically add to each update enough 
information that allows the precedence graph of updates to 
be traced. This allows the precise determination of 
concurrent work paths. Third, coobjects store updates 
allowing users access. This enables very flexible handling 
of concurrent updates, allowing updates transformation. 

Moreover, DAgora provides an open object framework that 
divides coobjects operation in several independent and 
reusable components, thus alleviating programmers from 
most of the inherent complexity associated with the above 
characteristics. Common coobject creation can be reduced 
almost to regular object implementation and selection of the 
desired semantics for the other components. 

Although DAgora characteristics enable very complex 
updates handling, experience with implemented coobjects 
indicates that most data types will require only simple (and 
easy to implement) techniques of concurrent updates 

merging. These techniques consists in: imposing an 
adequate (usually total) order to update application; using 
vector timestamps associated with each update to detect 
concurrent updates; adding update-specific conflict 
detection to each update code; adding update-specific 
conflict resolution to each update code. 
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