
Technical Report: TR-DI-UNL-04-2000 DI-FCT-UNL

Data Components for Mobile Groupware: The DataBricks Approach 1

Departamento de Informática

Faculdade de Ciências e Tecnologia

UNIVERSIDADE NOVA DE LISBOA

2825 Monte Caparica - Portugal

Technical Report

DI-UNL-04-2000

Data Components for Mobile Groupware:
The DataBricks Approach *

DataBricks Project Team

José Legatheaux Martins, Luís Caires, Nuno Preguiça, Sérgio Duarte,
João Costa Seco, Henrique João Domingos

Departamento de Informática
Faculdade de Ciências e Tecnologia - Universidade Nova de Lisboa

CITI
Centro de Informática e Tecnologias da Informação

Quinta da Torre, 2825-114 Monte da Caparica, Portugal
{jalm, lcaires, nmp, smd, jcs, hj}@di.fct.unl.pt

DataBricks PROJECT

http://asc.di.fct.unl.pt/DataBricks

* This work is partially supported by FCT, SAPIENS 33924, 2000.



Technical Report: TR-DI-UNL-04-2000 DI-FCT-UNL

Data Components for Mobile Groupware: The DataBricks Approach 2

Data Components for Mobile Groupware *:
The DataBricks Approach

* This work is partially supported by FCT, SAPIENS 33924, 2000.

DataBricks Project Team

José Legatheaux Martins, Luís Caires, Nuno Preguiça, Sérgio Duarte,
João Costa Seco, Henrique João Domingos

Departamento de Informática
Faculdade de Ciências e Tecnologia - Universidade Nova de Lisboa

Quinta da Torre, 2825-114 Monte da Caparica, Portugal
{jalm, lcaires, nmp, smd, jcs, hj}@di.fct.unl.pt

ABSTRACT
This paper presents the DataBricks project approach for
component-based groupware development. The project is
focused on the analysis, design and implementation of
system support services suitable for an easier development
of groupware applications in particular those aimed at
mobile users. The goals of the project are twofold. First, to
devise a specialized component model and associated
programming language, backed by an appropriate set of
development and support tools. Second, to supply a
distributed architecture and a set of standard
communication and data-management basic components
that can be refined and recursively composed. These two
closely related goals will speedup the process of building
and adapting distributed groupware applications for mobile
environments.

Keywords
Data management, component programming, mobile
computing, development support.

INTRODUCTION
Advances in hardware and communication technology are
leading to a dramatic increase in the use of portable
computers. Moreover, a widespread use of applications and
services in mobile computers and other embedded devices
is also foreseen. This trend will create the opportunity for
the development of innovative applications that will let
multiple mobile users to cooperate and share information
among them in order to achieve common goals - mobile
groupware. These applications will require specific data
management solutions to allow productive collaboration
among users. These solutions must be implemented relying
on distributed systems and distributed data management
techniques (e.g. multiple object replication strategies,

reconciliation of conflicting concurrent updates, fault-
tolerance requirements, new group-oriented awareness
support, support for variable quality of service adaptation,
reconfiguration/adaptation facilities, etc…). To grant
programmers the ability to explore sophisticated distributed
systems solutions, as well as to enhance the adaptability and
tailorability of the systems, it has been long recognized the
need to provide simple programming abstractions.

The DataBricks project is focused on the analysis, design
and implementation of system support solutions to ease the
development of collaborative applications for mobile
environments. To this end, we intend to propose a
component model, coupled with a programming language;
and supply adequate development and support tools. These
will allow programmers to meet end-user requirements by
adapting a set of application-level components, in an easy
and flexible way. This model and support will be used to
rebuild and enhance a distributed component framework
specially geared towards the support of distributed data-
management solutions in mobile environments.

This project extends our previous work [11] in two
directions. First, it addresses new data management
requirements to cope with resource-poor devices and
variable connectivity. It will also provides a model of
adaptation to environmental changes and enhanced
replication and reconciliation mechanisms. Second, it
addresses the definition of a new component model, a
related programming language and support tools that extend
our previous work in [3], and apply it to the mobile data
management scenario. This new framework, tools and set of
services will ease the way programmers have to deal with
the complexity of the broad requirements imposed by our
target environment.

The remainder of this paper is organized as follows. Section
2 presents the DataBricks approach. In section 3 we discuss



Technical Report: TR-DI-UNL-04-2000 DI-FCT-UNL

Data Components for Mobile Groupware: The DataBricks Approach 3

the limitation of current component-based development
systems. In section 4, we present some of the basic
components of our data-management component
framework. Section 5 presents the programming language
support at the component model level. Finally, section 6
concludes this paper with some final remarks.

THE DATABRICKS APPROACH AND OVERVIEW
The project's approach to address the complex data-
management problems posed to mobile and collaborative
computing is based on a distributed object store. The core
of the object store is responsible to provide high data
availability to applications, thus allowing users to perform
their contributions despite voluntary disconnection and
possible failures (in the servers or in the communication
system). To achieve these goals, it relies on the
combination of server replication and client caching using
an optimistic approach – users are allowed to execute new
updates independently being these updates later merged.
Updates will be propagated among servers using an
epidemic dissemination protocol.

This distributed platform is complemented with a
component framework specially designed for data
management in mobile environments. This framework is
composed by a set of domain specific components and
coordination abstractions that support the implementation
of specific global solutions relying on the composition of
pre-defined partial solutions. For example, a new
application may define a new shared data-type relying on
pre-defined components to handle concurrency control and
awareness information.

The framework will integrate, in a coherent way, solutions
to different problems and requirements: (1) partial
replication schemes to support resource-poor mobile
devices; (2) a model of adaptation to environmental
changes; (3) integrated data-evolution awareness
mechanisms; (4) mechanisms that enables the integration of
legacy data-systems; (5) concurrency and cache consistency
control mechanisms. Solutions for the last three problems
have already been pursued in [11] using a similar approach.
However, the first two problems demand an enhanced
support at the component model level – for example,
dynamic reconfiguration seems necessary to handle
adaptation to environmental changes without imposing too
much work to users. Additionally, the new component
model should allow the creation of new base components
relying on the composition of more elemental components
(i.e., not only the application data types will be composed
of pre-defined components, but also these components will
be a composition of other basic components).

To this end, a basic component model with a built-in notion
of typed component will be designed. The model will
support incremental assembly, query, reflection and
repository services, storage, migration, instantiation of
components, and dynamic reconfiguration of instances,

while ensuring type safety. The DataBricks component
framework will be designed and implemented using this
model. Language level support to express the software
architecture and composition operations at a useful level of
abstraction, extending de facto standards like DCOM,
CORBA or JavaBeans/EJB, will also be provided. The
designed language, referred provisionally as ComponentJ,
will extend the Java language with general constructs to
support the basic typed component model at the
programming language level.

WHY DON’T WE USE A “WELL-KNOWN COMPONENT
TECHNOLOGY”?
In general, the usual approach of component-based software
engineering addresses the fundamental requirements that
software systems need to be structured in terms of well-
known abstractions and reusable functionality (which
implies in architectural models based on the usual
properties of object-orientation). The added-value of
components, however, is that potentially, each component
can evolve and can be adapted as a black box or a closed-
product [13]. If some standard or well-known component-
oriented development systems are being used today to build
new complex applications, we can ask why in the
DataBricks approach we don’t start by simply adopt these
available technology, focusing only on the specific issues of
large scale and mobile CSCW/Groupware applications
design and implementation.

In fact we find that those technologies have some
limitations in terms of new requirements imposed by large
scale distribution environments and in the logic of such
applications as well as in the way to compose different
classes of components as a multi-layered extensible
framework . We will summarize some of these limitations
in three different items: limitations at component’s
interaction model level, limitations in terms component’s
structure related with functionality and usability and,
finally, limitations in terms of programming language
support and expressiveness criteria for final programmers.

Component’s interaction model limitations
In mobile and cooperative applications, the support for
shared workspace services and awareness control integrated
mechanisms require that, in different circumstances, we
must be able to explore different models of group-oriented
interactions.

For example, in a client-server model, a single server
process manages all the shared cooperative workspace
services. Clients, basically, implement the end-user
interface, and interact with each other only through server
mediation. Clients can use replicate/cache (part of) the
shared workspace that is centrally controlled by the server
to reduce access latency to shared artifacts, but the logic to
control interdependencies and/or conflicts are centrally
managed by a well-known entity – the server and its



Technical Report: TR-DI-UNL-04-2000 DI-FCT-UNL

Data Components for Mobile Groupware: The DataBricks Approach 4

internal components. This well understood paradigm is
simple to program and basically is the model subjacent to
well-known component technology like CORBA or
COM/DCOM.

In mobile cooperative environments, the major drawback of
client-server based models is the lack of fault-tolerance and
no scalability properties when a server crashes or is
unreachable (but not to client crashes).

The limitations of adopting the current well-known
component’s based technology is caused by the fact that we
are convinced that the subjacent client-server philosophy
isn’t enough and basically is poor and inadequate.

In our approach, the perspective is to provide components
that will be used in active group-replication models, where
the component’s state and data can be actively replicated by
a set of servers or by a group of clients to avoid fault-
tolerance drawbacks and to improve scalability.
Furthermore, there are possible variants based on group-
replication models: peer-based component’s interactions (at
client-level with no server accessibility), peer-group
applications that reuse external services (e.g. authentication,
security, name services), etc. Active replication groupware
models that we are focusing on, imply that application and
system support components must cooperate in a shared
workspace adopting interaction models essentially different
than client-server based paradigms.

Structure of component’s functionality and its
reusability
So, the meta-infrastructure of well-known today’s
component technology is client-server based and, in some
sense, uses a dualistic approach. In one hand there are
components and services encapsulating low-level system
support abstractions, which are closed for the final
application-level programmers. In other hand, application
programmers use those low-level abstractions focusing
component’s programming techniques on end-user
functionality and interface.

The base-system support that is subjacent to well-known
component’s programming environments implement base
abstractions that are oriented for single-user applications.
Issues like data-replication, group-awareness control
mechanisms, group-resource sharing and floor control, etc.,
are leaved for groupware programmers.

Furthermore, the adaptation or dynamic reconfiguration of
base system support services in terms of specific
application needs is completely closed for groupware
programmers. Low-level system components and
infrastructures are reused by means of semantic interface
standards, but without an agreement about what that
semantic means when a particular operation is invoked by
application level components. Thus, the programming
approach remains meaningless, and there is no
expressiveness to compose the available functionality in

terms of adapting base infra-structural cooperative-oriented
services to specific application needs.

For example, the main concern that components entering a
system base functionality need to be connected to
components that are already fixed and present is addressed
by systems like CORBA or DCOM but that are no real
composition and reconfiguration facilities leading with
internal semantics of remote service components. The
JavaBeans approach primarily targets the concern of
dynamic loading of distributed components, but uses single
point-to-point remote method invocations on volatile
server-objects. None of those systems has the approach to
an extensible middleware component-oriented architecture
(as a component repository providing data management
facilities, group-communication services, and application-
artifact components that can be reconfigured and
recomposed by the programmers, at different levels and in a
simple way. We will show in the section 4 how an object-
repository can be reused by means of an adaptive
component-oriented structure taking in account the above
considerations.

Support at programming language level
We also find a lack of suitable programming language
support to the construction and composition of components
as defined by the before mentioned models. For instance,
CORBA and COM/DCOM provide no more than interface
definition languages. COM+ has failed to support static
type-checking, interface polymorphism and proper language
support. SOM is a standard for deployment and
composition of object-oriented component binaries, relying
heavily on inheritance. Thus, SOM suffers from the
semantic "fragile base class" problem [8] which we intend
to circumvent in our approach by adhering strictly to black-
box composition. JavaBeans allows packaging several
classes into so-called beans, which are nothing but regular
Java classes adhering to some interface conventions. As a
matter of fact, no proper typed language support has been
offered specifically for JavaBeans. Although Java is often
referred as a component-oriented programming language,
the study of programming language support for component
based programming still relies on idioms rather than on
high-level abstractions.

Our position is that without effective programming
language level constructions able to express operations of
composition, instantiation, and reconfiguration, the
usability of a given component framework will be seriously
affected, both at the systems and application level. In
particular, we believe that extant component technology is
not easily adaptable to some specific requirements of
CSCW models (which are in general different from those
based on a simpler and once for all fixed architecture, like
the client-server approach).

Therefore, we intend to explore a new programming model,
which includes specialized constructions to support



Technical Report: TR-DI-UNL-04-2000 DI-FCT-UNL

Data Components for Mobile Groupware: The DataBricks Approach 5

component-oriented programming. Other approaches have
been suggested in specific contexts: Component Pascal,
Units [7], Mixins [1]. In this project, we intend to develop a
general notion of typed component following [3], that
accounts for new forms of dynamic component adaptation
and composition. The resulting programming language,
called ComponentJ, extends Java with some basic
ingredients essential to black-box object-oriented
component programming styles like explicit context
interdependences, dynamic binding and subtype
polymorphism, multiple views, statically verified (dynamic)
late composition, and avoidance of inheritance in favor of
object composition. The approach using the ComponentJ
programming language the Databricks model will be
detailed and illustrated later on, in the section 5.

BASIC DATA COMPONENTS
The DataBricks component framework will be composed
by several components that manage different aspects of the
object “operation”. In this section we will briefly present
the most important aspects involved in the component
framework and motivate for the need of type-specific
solutions (in [11], we present a more detailed discussion of
some of these problems).

Concurrency control
In the optimistic replication scheme adopted in the
DataBricks project, users may independently perform
concurrent updates. Although many algorithms (e.g. [9,12])
have been proposed to manage similar situations, no one
seems adequate to all situations. Nevertheless, the use of
semantic information has been identified [6,10] as a key
element to merge the concurrent streams of activity. To
maximize the flexibility in the handling of concurrent
updates, we will propagate updates as operations, thus
allowing data types to use not only the semantic information
associated with the data type but also the semantic
information associated with each performed operation.

The concurrency controlcomponent will be responsible to
execute the updates performed by users. Two inter-related
problems must be taken into consideration: how to
guarantee that all data replicas evolve as expected and how
to guarantee that users' intentions are respected.

The first problem can be handled constraining the execution
order of updates. For example, executing all (deterministic)
updates by the same order in all replicas leads all replicas to
the same state. However, as different replicas may have
received different subsets of updates, it is usually necessary
to postpone the execution of some updates to guarantee that
property. In some applications it is not necessary to achieve
exactly the same state or due to semantic properties it is
possible to rely on weaker orderings to achieve the same
state. Several pre-defined components implementing
different policies will be defined.

To tackle the second problem, three main approaches have
been proposed in literature. First, the use of transactions -
an update is committed if data values are equal to those
observed by the user, otherwise it is aborted. Second,
updates are transformed based on the updates executed after
the state observed by the user [12]. Third, semantic
information is used in the synchronization process [6,10].
Although we expect that most applications will rely on
semantic information, components using other approaches
(at least, operational transformations) will be available to
programmers.

Besides defining a set of pre-defined implementations to the
application programmer, we will decompose this
component in more basic sub-components – at least, there
will be a sub-component to define the order of updates and
another one to control the execution of updates using that
order. This way, it will be possible to create new
concurrency controlcomponents composing pre-defined
basic solutions.

Awareness
Awareness has been identified as important in the
development of collaborative activities because individual
contributions may be improved by the understanding of the
activities of the whole group [4]. In DataBricks, each
processed update may produce a piece of awareness
information, thus allowing the system to process the
information about the evolution of shared data. The
awareness component allows each data-type to use a
different mechanism to handle this information – in some
applications it is interesting to notify users about the results
of their updates (e.g. in a scheduler), while in others a log
with the awareness information may be sufficient (e.g. in a
document editor).

Our group is also involved in the design of a new event-
dissemination architecture to propagate awareness
information (see [5] for a preliminary design). This
architecture will allow users to specify the way awareness
information is propagated to themselves – for example,
some user may request to be immediately notified using
SMS/pager messages for important information, daily
digests for information about activities that he is not
directly involved on, and e-mail for other messages.

Clustering
In [11], each object managed by the system may represent a
rather complex data object, such as a document or a
calendar, and be implemented as an arbitrary composition
of common objects. This approach may lead to some
problems in resource-constrained devices where it is
impossible to manage large amount of data. To overcome
this problem, in DataBricks we will define the concept of an
object cluster (a similar concept has been used in [2]). A
cluster will be a set of objects that share common policies
for (most of) the different aspects of object “operation”, in



Technical Report: TR-DI-UNL-04-2000 DI-FCT-UNL

Data Components for Mobile Groupware: The DataBricks Approach 6

particular for concurrency control – this way, all objects
evolve in a coherent way as a single unit. However, each
object of the cluster may be manipulated alone. For
example, using this approach a document may be defined as
a cluster containing the document organization and the
document basic elements (chapters, sections). A user may
manipulate each section independently without the need to
cache the complete document – this can be seen as a form
of partial replication.

Other aspects
As in [11], it will be necessary to define other base
components, such as components to store updates, to store
meta-information about the objects, etc. We think that it is
important to emphasize three aspects that will be addressed
in the DataBricks project. First, we will provide base
components that allow different data organizations. For
example, we will provide a base data component that
automatically manages multiple versions. Second, we will
allow the integration of legacy/external systems. To this
end, base data components that act as surrogates of legacy
systems, in particular RDBMS, will be developed. We
expect to further develop a preliminary approach that we
have presented in [11] with the integration of partial
replication mechanisms. Third, we expect to define
mechanisms that allow the system and applications to adapt
to modifications in the computing environment. In
particular, we expect that variations in connectivity could
be explored in order to provide the best possible quality of
service for users - for example, depending on connectivity
some operations may be executed immediately in servers or
locally in the client cache.

PROGRAMMING LANGUAGE SUPPORT
Component-based programming can be seen as a
refinement of object-oriented programming in which black-
box composition of components that present explicit
interfaces substitute inheritance as the basic reuse
mechanism. A component programming language must
include a notion of “component” as a first class entity and
provide specific operations on components. By
internalizing such operations at the programming language
level one gets more opportunities for performing static
analysis for the verification of interesting runtime properties
of component instances. For instance, it should be possible
to represent the dynamic composition of components (their
dynamic reconfiguration) and their instantiation in a safe
way - for instance, ensuring that all required resources are
available. Following these principles, team members have
designed a simple component model that identifies a few
basic operations that bring component-oriented
programming concepts explicit in a program. Aspects like
name space management (some COM component can be
referenced in a context that it does not exist, an execution
error will occur) or obstacles to reuse resulting from
undisciplined implementation inheritance are banned out

from our model in order to eliminate implicit context
dependencies of components. Moreover, we have defined
for our model a type system ensuring that certain run-time
errors do not occur due to ill-defined composition
operations.

A concrete implementation of this model is the
programming language ComponentJ, which is a mild
extension of the Java Language we have been working on.
To build applications, the programmer defines and (re)uses
components instead of classes to build the intended
software architecture. Component construction operations
bring the expressive power of an architecture definition
language and enable the application programmer to define

components from scratch, or to compose existing
components into a more complex architecture. Such
components are class-like entities that can be instantiated,
and present an explicit description of their interface both in
terms of the services they provide, but also in terms of the
services they require. Components can only produce
instances when those required services are properly
available in the environment (e.g. are plugged in). The
basic syntactical elements in a component declaration are:
explicit requirements (input ports), provided services
(output ports), inner components and blocks of methods
implementing the needed functionality. These elements can
then be interconnected through a “plug” operation. Note
that these composition operations can be used at runtime
and components are first-class values that can be freely
manipulated, that is, the definition of a component is not
some form of (static) link-time specification, moreover the
safety of such operations is ensured by the type system.

To be more concrete, let’s illustrate the basic flavor of our
approach with a specific example, an implementation of a
shared data type to which we have called co-object [11]. In

ÿþýüû��þýü

�þ�þû��þÿþ

��þÿþ

���û��� �

þÿÿ�û��ÿÿ��

��û��� ���ÿ� ý�ýû�� �ýÿ��

þ�û���þ����ýý

�û��þÿþ

��þ�ý����

���þ����þÿþ

�ÿ�û����� �ÿ�

�� � �� �ÿ�

þÿÿ�û��ÿÿ�

��ÿÿ�

þ�þ��û���þ��

���þ����ýý

ý�ýû�ý�ýÿ��

� ��û�� ��

����

�þÿþû��þÿþ
ÿþýüû��þýü

�þ�þû��þÿþ

��þÿþ
ÿþýüû��þýü

�þ�þû��þÿþ

��þÿþ
ÿþýüû��þýü

�þ�þû��þÿþ

��þÿþ

���û��� �

þÿÿ�û��ÿÿ��

��û��� ���ÿ� ý�ýû�� �ýÿ��

þ�û���þ����ýý

�û��þÿþ

��þ�ý����

�� �û�� � �

þÿÿ�û��ÿÿ��

��û��� ���ÿ� ý�ýû�� �ýÿ��

þ�û���þ����ýý

�û��þÿþ

��þ�ý����

���þ����þÿþ

�ÿ�û����� �ÿ�

�� � �� �ÿ�
�ÿ�û����� �ÿ�

�� � �� �ÿ�

þÿÿ�û��ÿÿ�

��ÿÿ�
þÿÿ�û��ÿÿ�

��ÿÿ�

þ�þ��û���þ��

���þ����ýý
þ�þ��û���þ��

���þ����ýý

ý�ýû�ý�ýÿ��

� ��û�� ��

����
� ��û�� ��

����

�þÿþû��þÿþ

Fig 1. Theÿþýüûúùøü÷üÿþýüûúùøü÷üÿþýüûúùøü÷üÿþýüûúùøü÷ü component graphical representation



Technical Report: TR-DI-UNL-04-2000 DI-FCT-UNL

Data Components for Mobile Groupware: The DataBricks Approach 7

Fig 1, we depict a set of base components (CLog, CAttr,
CConcCtl, CAwareness, CData and CCapsule) used to
compose a bigger component calledCSharedData. Some
services like logging, concurrency control and awareness
are provided by the componentsCLog, CAttr, CconcCtland
CAwareness, which were chosen from the component
repository. The componentCCapsulecoordinates this set of
services, and provides a unique interface to the shared data
type, by relying on theCData component, which bridges to
the application data. Roughly, this architectural description
will be expressed in ComponentJ as shown in Fig 2.

CONCLUDING REMARKS
In this paper we have presented the DataBricks project.
This on-going research effort is designing support for the
development of collaborative applications for mobile
environments. To this end, it will provide a data-
management component framework that decomposes data-
management in a set of complementary services (e.g.,
concurrency control). Different implementations will be
provided to programmers allowing them to create the
“right” solution composing several pre-defined basic
solutions. Problems specifically related with mobile
environments will be taken into consideration (e.g. support
for partial replication and adaptation to variable
connectivity). This component framework will be designed
using a new component model that overcomes some
limitations existent in widely used component models. The
associated linguistic support allows programmers to easily
compose their solutions at an adequate level of abstraction.

REFERENCES

[1] Bracha, G., Cook, W., Mixin-Based Inheritance. In
Proceedings of the Conference on Object Oriented
Programming: Systems, Languages and Applications,
1990

[2] Bakker, A., et al. From Remote Objects to Physically
Distributed Objects. In Proc. 7th IEEE Workshop on
Future Trends of Distributed Computing Systems, Dec.
1999.

[3] Costa Seco, J., Caires, L. A basic model of typed
components. InProceedings of the 14th European
Conference on Object-Oriented Programming
(ECOOP'2000), LNCS 1850, Springer, 2000

[4] Dourish, P., Bellori, V. Awareness and Coordination in
Shared Workspaces. InProceedings of CSCW'92,
1992.

[5] Duarte, S., Legatheaux Martins, J., Domingos, H.,
Preguiça, N. DEEDS - An Event Dissemination
Service for Mobile and Stationary Systems. InActas do
1º Encontro Português de Computação Móvel, 1999.

[6] Edwards, W., Mynatt, E., Petersen, K., Spreitzer, M.,
Terry, D., Theimer, M. Designing and Implementing
Asynchronous Collaborative Applications with Bayou.
In Proceedings of UIST'97, Oct. 1997.

[7] Flatt, M., Felleisen, M., Units: Cool Modules for HOT
languages. InProceedings of the ACM SIGOPLAN’98
Conference on Programming Language Design and
Implementation (PLDI). 1998

[8] Forman I. R., Conner M. H., Danforth S. H., Raper L.
K. Release-to-Release Binary Compatibility in SOM.
ACM SIGPLAN Notices OOPSLA’95, 1995

[9] Karsenty, A., Beaudouin-Lafon, M. An Algorithm for
Distributed Groupware Applications. InProceedings of
13th ICDCS, May 1993.

[10] Munson, J., Dewan, P. Sync: A Java Framework for
Mobile Collaborative Applications.IEEE Computer,
June 1997.

[11] Preguiça, N., Legatheaux Martins, J., Domingos, H.,
Duarte, S. Data Management Support for
Asynchronous Groupware. To appear inProceedings
of CSCW'00, December 2000.

[12] Sun, C., Ellis, C. Operational Transformation in Real-
time Group Editors: Issues, Algorithms, and
Achievements. InProceedings of CSCW'98, 1998.

[13] Szypersky, Clement. Emerging component software
technologies – a strategic comparison, InSoftware
Components and Tools, Springer 19(1), pp 2-10, 1998

������ú�÷ ÿþýüûúùøü÷ü �� ������ú �
�û���ùú� �þ��÷ú� ����

�û���ùú� �øü÷ü ùü÷ü�

��÷û� ÿÿü����ú �ü��
��÷û� ÿ��� ����úû�
��÷û� ÿ�÷÷û ü÷÷û���÷ú��
��÷û� ÿÿ���ÿ÷� ���÷û��úû�
��÷û� ÿ��üûú�ú�� �ü÷�ýúû�
��÷û� ÿøü÷ü ����ú�÷�

���� �ü����� ��÷� ����
���� ����ú�÷�ù ��÷� ùü÷ü�
���� ����úû���� ��÷� �ü������
���

�
Fig 2. A part of the ÿþýüûúùøü÷üÿþýüûúùøü÷üÿþýüûúùøü÷üÿþýüûúùøü÷ü code


