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Abstract

In a distributed system, optimistic replication enables users on different
sites to query and update their local replicas of shared databases without a pri-
ori synchronization. Replicas may diverge, and updates must be reconciled;
reconciliation is a difficult problem in the presence of conflicts, alternative
execution paths, and dependencies between transactions. We present SqlIce-
Cube, a general-purpose reconciliation system. SqlIceCube automatically
extracts significant semantic relations from the program text of transactions.
Examples of relations are a transaction that depends on another, helps an-
other, hinders another, constitutes an alternative to another, etc. In turn these
semantic relations feed into the SqlIceCube scheduler, which generates and
executes a combination of transactions with the highest possible value. The
approach is general and supports combinations of transactions across a vari-
ety of different applications. Application experience and benchmarks show
the viability of the approach. SqlIceCube correctly extracts semantic rela-
tions from an interesting variety of application transactions, performs well,
and scales well to large input sizes.

1 Introduction

Distributed systems replicate shared data to improve read availability and perfor-
mance. Optimistic replication allows a user to update a local replica independently.
This improves write availability in the presence of high network latencies, failures,
voluntary disconnection, or parallel development, but allows replicas to diverge.
This is especially useful for mobile computing environments.

Repairing divergence after the fact, called reconciliation, combines the isolated
updates [28]. In operation-based (or log-based) approaches, update operations are
recorded in a log; reconciliation replays the combined operations, from the initial
state, according to some schedule.

∗This work was partially supported by FCT/MCT. Nuno Preguiça was partially supported by a
FSE schorlarship.
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Figure 1: Syntactic scheduling spuriously fails on this example

Sometimes, the execution of some updates in a given database state would
violate a precondition or an invariant. In this case, relying on conflict resolution
rules (e.g. exploring alternative updates) and running updates in a different order
may allow better reconciliation results (i.e., more updates can be executed). The
updates that cannot be executed must be dropped.

Reconciliation must minimize the number of dropped updates, as dropping an
update may have a high impact. Think of a calendar system dropping an important
meeting, or a sales-support tool for a salesman that would drop an order.

Log-based reconciliation systems (e.g. Bayou [30] and Deno [15]) usually use
a simple syntactic criterion to decide in which order updates should be run. This is
inflexible and may cause spurious conflicts even in very small problems. Consider
the example of figure 1, where two users make meeting requests to a calendar
program. One user requests room A at 9:00, and either room B or C, also at 9:00.
Meanwhile, other user requests either room A or B at 9:00. Combining the logs
in some simple way does not work. For instance running Log 1 then Log 2 will
reserve rooms A and B for the first user, and the second user’s requests is dropped.
Running Log 2 first has a similar problem. Satisfying all three requests requires
reordering them. Thus, reconciliation systems must be prepared to reorder updates.

Some reconciliation systems reorder operation execution for improving con-
currency [29] or reconciliation results [21]. In these systems, programmers must
express the semantic information needed by the reconciliation engine. The intel-
lectual complexity of expressing this information is usually non-trivial and pro-
grammers will not be willing to execute this extra work or will end up creating
bad semantic rules that lead to poor reconciliation results. Moreover, this approach
makes it difficult to introduce new operations, as all semantic rules must be ex-
tended to include the new operation. Although this approach may be acceptable in
some settings (e.g. specific applications), it imposes unusual restrictions in generic
database systems. In contrast, the system presented in this report automatically
infers the semantic information needed for reconciliation.

1.1 Our approach

This report presents the SqlIceCube general-purpose reconciliation system for mo-
bile database systems. This work builds on our previous experience on the devel-
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---- ORDER PRODUCT: id = 80; quantity = 10; highest price = 100.00
DECLARE
l_stock INTEGER;
l_price FLOAT;

BEGIN
SELECT stock,price INTO l_stock,l_price FROM products WHERE id=80;

-- check price acceptability and stock availability
IF l_price <= 100.0 AND l_stock >= 10 THEN

UPDATE products SET stock = stock - 10 WHERE id = 80;
-- newid returns the same unique identifier
-- in the client and in the server

INSERT INTO orders VALUES (newid,8785,80,10,l_price,’to process’);
COMMIT; -- commit transaction (and return)

ELSE
ROLLBACK; -- abort transaction (and return)

ENDIF;
END;

Figure 2: Mobile transaction adding a new order in a mobile sales application.

opment of the IceCubegeneric reconciler [26].
In SqlIceCube, update operations are expressed as small programs written in

a subset of PL/SQL [22]. These programs, dubbed mobile transactions (or simply
transactions), are submitted by users’ applications to modify the database. Figure 2
presents a simple mobile transaction to submit a new order in a mobile sales appli-
cation. The code of the transaction verifies if the stock is sufficient and the price is
acceptable before adding the new order to the database.

SqlIceCube is a generic reconciliation engine that combines concurrently ex-
ecuted mobile transactions into a single execution schedule. While disconnected,
mobile transactions may be tentatively executed against local replicas. During rec-
onciliation, the mobile transactions’ programs are executed again, i.e., the transac-
tions are replayed logically (as opposed to redoing physical writes).

The SqlIceCube generic reconciler can be integrated in different mobile database
systems to reconcile transactions executed concurrently in disconnected devices. In
section 7, we discuss the integration of SqlIceCube as the reconciliation system in
several systems.

Reconciliation is executed in two steps: the semantic inference and the basic
reconciliation.

The semantic inference module automatically infers the semantic information
needed by the basic reconciler. Each transaction is statically analyzed to extract
relevant semantic information (read/written data items and preconditions). Then,
for each pair of transactions, a set of semantic static relations (e.g. overlap) is
inferred using the extracted information.

The basic reconciler tries to find a schedule that allows more transactions to be
executed. To this end, it performs an heuristic search within the space of solutions
that respect the inferred semantic relations. Mobile transactions being reconciled
may combine updates from different applications and even for different databases.
As compared with similar approaches [26, 9], our reconciler presents a subtle but
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important difference: reconciliation is seen as a planning problem instead of a
constraint solving problem. As we discuss in section 2.2.2, this approach allows
to overcome some problems with compensating transactions experienced in con-
straint solving-based approaches.

This work presents the following contributions. First, it identifies a set of static
relations that can be used to expose semantic information relevant for reconciliation
problems. This information can expose not only the semantics of the data types and
operations but also the users’ intents.

Second, it presents a generic semantics-based reconciliation engine that creates
near-optimal reconciliation results. SqlIceCube reconciles consistently and seam-
lessly between transactions involving different applications and databases. Bench-
marks presented in this report show that SqlIceCube reconciles in reasonable time
and scales nicely to large logs.

Third, it includes a semantic inference module that simplifies the use of semantics-
based reconciliation. Unlike previous systems, semantic information used during
reconciliation is automatically extracted from operations, thus alleviating program-
mers from most of the work usually involved in semantics-based reconciliation.
This approach also enables new operations and applications to be defined without
need to modify the reconciliation system.

The remainder of this report is organized as follows. Section 2 presents our
general-purpose semantics-based reconciler. Section 3 describes the techniques
used in the basic semantic inference module and section 4 discusses some exten-
sions to these techniques. Section 5 describes the status of our prototype. Section 6
presents an evaluation of SqlIceCube performance and solutions’ quality. Section
7 discusses the deployment of SqlIceCube in different systems and architectures.
Section 8 presents related work and section 9 concludes the report with some final
remarks.

2 Generic semantics-based reconciler

In this section we present the generic SqlIceCube reconciler. This reconciler cre-
ates and executes near-optimal schedules that combine transactions submitted con-
currently in multiple mobile clients. The schedules are created incrementally, se-
lecting, at each step, the mobile transaction that may lead to a better reconcilia-
tion result. The selection algorithm is heuristic, based on the semantic static rela-
tions among transactions. The reconciler may create a set of alternative schedules,
heuristically probing the space of all possible schedules.

We start by describing the semantic information used. Then, we present the
basic heuristic reconciliation engine.
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2.1 Dynamic constraints/pre-conditions

Dynamic constraints are restrictions to the execution of mobile transactions that
depend on the database state. Therefore, they can only be verified in runtime.
These restrictions are specified in the code of transactions by preconditions and
commit and rollback statements. For example, the transaction of figure 2 can only
commit if the stock and price for the specified product meet the given conditions.

Dynamic constraints are not used directly by the reconciliation algorithm, as
evaluating the expressed conditions after executing each transaction would impose
an excessive performance cost because it requires accessing the database. Instead,
preconditions are used to infer suitable static relations, as explained next.

2.2 Static relations

Static relations are relations among mobile transactions that do not depend on the
database state. Therefore, they are can be used during the reconciliation process
without accessing to the database. Two types of static relations are used in our
reconciler: log relations and data relations.

2.2.1 Static log relations

Log relations are relations that express users’ intents. These relations are indepen-
dent of the semantics of each specific basic transaction. Instead, they encode the
semantics of a macro-operation composed of several basic transactions. Usually
they are explicitly set by applications but some of them can also be automatically
inferred as discussed later. The following log relations are defined:

Alternatives Specify that a single transaction must be committed from a set of
alternatives. This allows the definition of basic conflict resolution rules. For
example, when scheduling a meeting, a user can specify two or more alter-
native meeting rooms or dates.

Strong predecessor-successor The successor transaction can only be executed af-
ter (and if) the predecessor transaction commits. This allows to establish a
causal order between transactions. For example, a transaction that submits
requests related to a given meeting (e.g. food for the coffee break) should
only be executed after committing the transaction that schedules the meet-
ing.

Weak predecessor-successor If both transactions commit, the predecessor must
be executed before the successor. This allows to establish a weak causal
order between transactions. For example, a transaction that schedules a new
appointment for some day can only be executed before the execution of a
transaction that cancels all existent appointments for that day.
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Parcel Defines an all-or-nothing group of transactions. Unlike the operations in
a transaction, the execution of the basic transactions that compose a parcel
may be interleaved with the execution of other transactions. The isolation
property of transaction is not guaranteed by the execution of a parcel (al-
though the execution of each basic transaction respects isolation). For ex-
ample, a bank transfer can be defined as a parcel with two transactions, one
withdrawing money from the source account and the other depositing money
in the destination account.

The alternatives and weak predecessor-successor relations can be combined to
create a set of ordered alternatives. The alternatives relation guarantees that only
one transaction is executed. The weak-predecessor relation guarantees that the
preferred transaction is executed, if possible (as detailed later, the reconciliation
engine favors the executions of transactions that have no predecessor).

2.2.2 Static data relations

Data relations are relations between transactions that encode the semantics of the
operations. These relations are defined independently of the database state. The
following static data relations are used:

Commute Two transactions commute if the result of executing both is indepen-
dent of the execution order, i.e., given two transactions t1 and t2, ∀s∈ S , t1(t2(s)) =
t2(t1(s)), with S the set of all possible database states. For example, two
transactions that modify unrelated data items commute.

Helps The transaction t1 helps the transaction t2 if the commitment of t1 changes
the database state in a favorable way for the success of t2, i.e., ∃s ∈ S :
¬valid(t2,s)∧valid(t2, t1(s)), with valid(t,s) true if t can commit in database
state s. For example, a transaction that increases the stock of some product
improves the chance of accepting a new order request (with the available
stock).

Prejudices The transaction t1 prejudices the transaction t2 if the commitment of
t1 changes the database state in a prejudicial way for the success of t2, i.e.,
∃s ∈ S : valid(t2,s)∧¬valid(t2, t1(s)). For example, a transaction that de-
creases the stock of some product hinders the chance of accepting a new
order request.

Makes possible The transaction t1 makes possible the transaction t2 if the commit-
ment of t1 changes the database state in a way that makes possible to commit
t2, i.e., ∀s ∈ S,valid(t2, t1(s)). For example, removing all meetings in a given
room makes possible to schedule a new meeting for that room.

Makes impossible The transaction t1 makes impossible the transaction t2 if the
commitment of t1 changes the database state in a way that makes impossible
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to commit t2, i.e., ∀s ∈ S,¬valid(t2, t1(s)). For example, setting the price of
some product to a value that violates the preconditions of an order request
makes impossible to accept this requests.

The static relations helps, prejudices, makes possible and makes impossible en-
code the influence of one transaction over the dynamic constraints (preconditions)
of the other transaction. Thus, they suggest a preferable execution order between
pairs of transactions.

This approach represents a subtle but important difference when compared with
the IceCube reconciler [26] and the Fages’ constraint programming approach to
reconciliation [9]. In these approaches, constraints between transactions (actions in
their terminology) represent definite order and incompatibility relations that must
enforced by the reconciler. In our approach, an incompatibility relation between
two transactions can be cancelled by a third transactions, as we would expect.

For example, if two transactions are declared mutually exclusive they cannot
be both scheduled, even if a third transaction makes possible the execution of both
transactions. Consider two transactions that schedule the same meeting room for
the same day. As these transaction would be considered mutually exclusive one of
them would be dropped. However, if a third transaction cancels one of the schedul-
ing requests, it is possible to execute all transactions. To prevent these problems,
IceCube includes a log cleaning mechanism that removes pairs of transactions that
compensate each other. In practice, it is hard to find pairs of perfectly compensat-
ing transactions, as they tend to leave a record in the system (e.g. when a meeting
is cancelled, the systems often keeps a record with the information about the can-
celled meeting).

2.3 Heuristic reconciliation engine

The goal of the reconciler is to create a schedule that maximizes the value1 of
transactions that can be executed with success. As, for non-trivial problems, it is
impossible to check all possible schedules, we have implemented a reconciliation
algorithm that probes the space of possible solutions heuristically. To this end, the
reconciler creates and executes a sequence of schedules that combine the transac-
tions submitted concurrently by multiple mobile clients. The reconciliation process
ends when a schedule that meets a specified optimality condition is generated, or
the specified search time is exhausted.

Merit of a transaction: The heuristic used in the SqlIceCube reconciliation
engine is based on the merit of transactions. The merit heuristically computes the
benefit of adding a given transaction to a given partial schedule. The reconciler
creates a schedule incrementally by iteratively selecting a transaction to add to a
partially created schedule.

1By default, every transaction has value 1, but applications can assign different values to a trans-
action depending on its importance.
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An oracle estimates the merit of each transaction based on the static rela-
tions established between this transaction and all other transactions that can still
be scheduled. The merit of transaction a is higher as:

1. It belongs to a parcel that includes a transaction already executed.

2. The value of (weak) predecessors of a, which would be aborted if a is se-
lected, is lower.

3. The value of alternatives to a is lower, as it is more likely to be possible to
commit one transaction with more alternatives.

4. The value of transactions a makes impossible is lower, as those transactions
cannot be committed, at least temporarily; the value of transactions a makes
possible is higher.

5. The value of (weak and strong) successors of a is higher. as successors are
made possible by the execution of the predecessor.

6. The value of transactions a helps is higher; the number of transactions a
prejudices is lower.

The above factors are listed in decreasing order of importance. Despite the
previous rules, the merit of transaction a is zero if a has a strong predecessor that
has not been executed yet or a has an alternative that has already been executed.

Create a single schedule: Figure 3 displays in pseudo-code the basic algorithm
to create a single schedule. The algorithm maintains the set of candidate transac-
tions that can be scheduled, trxs, and the set of transactions that are known to be
temporarily impossible (i.e., the transactions that can not be executed in the cur-
rent database state), badTrxs. Furthermore, it maintains a summary of relations
established among transactions.

The algorithm creates each schedule incrementally as follows. At each step the
algorithm selects (with randomization) one transaction among the candidates with
highest merit (selectTrxByMerit). The selected transaction is executed against
the current database state.

If the transaction executes successfully (i.e. it ends in a commit statement), it is
added to the current partial schedule and the value of the schedule is updated. All
transactions in the badTrxs set that are helped (or made possible) by this transac-
tion are removed from badTrxs (as it might be possible to execute them again). All
transactions that are temporarily made impossible by the execution of this transac-
tion are added to badTrxs. All transactions that are definitely made impossible
by this transaction (weak predecessors and alternatives) are removed from the set
of transaction to schedule, trxs. The executed transaction is also removed from
trxs.
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scheduleOne (state, summary, goodTrxs) = // pseudo-code
schedule := []
value := 0
trxs := goodTrxs // trxs to schedule
badTrxs = {} // trxs known to be impossible (temporarily)
WHILE trxs <> badTrxs DO

// select next trx to execute
nextTrx := selectTrxByMerit( trxs, badTrxs, schedule, summary)
result = state.execTrx( nextTrx)
IF result = COMMIT THEN // trx has committed
trxs = trxs \ {nextTrx}

// trxs that are definitely made impossible
// (alternatives, weak predecessors)

toExclude = incompatible( nextTrx, trxs)
trxs = trxs \ toExclude

// trxs that are helped by the given trx
// (helps, makesPossible)

toInclude = helps( nextTrx, badTrxs)
badTrxs = badTrxs \ toInclude

// trxs that are temporarily known to be impossible
// (makesImpossible)

toTempExclude = makesImpossible( nextTrx, trxs)
badTrxs = UNION( badTrxs, toTempExclude)
summary.updateInfo( trxs, nextTrx, toExclude,

toInclude, toTempExclude)
schedule := [schedule | nextTrx]
value := value + nextTrx.value

ELSE // trx has rollbacked
badTrxs = UNION( badTrxs, {nextTrx})
summary.updateInfoBadTrx( trxs, nextTrx)

ENDIF
ENDWHILE
badParcels = incompleteParcels(schedule)
IF NOT EMPTY( badParcels) THEN

SIGNAL DynamicFailure( badParcels)
ELSE

RETURN { schedule, value }

Figure 3: Algorithm to create a single schedule.

If the transaction execution fails (i.e. it ends in a rollback statement), the trans-
action is added to the set of transaction that are temporarily known to be impossi-
ble.

In both cases, the summary of relations among transactions is updated.
This incremental process proceeds while there are transactions to schedule that

are not known to be impossible. In the end, the algorithm verifies parcel integrity.
If all parcel relations are respected, the created schedule is valid and is returned.
Otherwise, the basic algorithm signals an error indicating the set of transactions
that caused the problem.

The scheduleOne algorithm is called successively until it creates a schedule
that meets a specified optimality condition (by default, until all transactions but
alternatives of one executed transaction are executed) or the specified search time
is exhausted. To this end, the reconciliation algorithm needs to create a checkpoint
of the initial database state. Before calling the scheduleOne function, the initial
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database state is restored using this checkpoint.
When the scheduleOne algorithm fails returns an error, no schedule is created.

To prevent this situation from occurring every time scheduleOne is called, the
reconciliation algorithm removes the transactions that caused the problem from
the set of transactions to reconcile (parameter goodTrxs) until a good schedule is
found.

Complexity: The cost of of scheduleOne is dominated by selectTrxByMerit.
The overall complexity is O(n2), where n is the number of transactions to reconcile
(size of goodTrxs). Intuitively, order n transactions are scheduled, and for each one
selectTrxByMerit considers all the remaining transactions (O(n))2.

The merit of a transaction evaluates in constant time thanks to a summary of
static relations. This summary is computed at the beginning of the reconciliation
process and its complexity is O(n2) because it compares every transaction with
every other. During the execution of scheduleOne, this summary is updated in
expected constant time because each transaction is expected to establish relations
only with a small number of other transactions. In the worst case, when a transac-
tion establishes relations with O(n) transactions, the summary is updated in O(n).
In this case, the overall complexity of scheduleOne continues to be O(n2), but this
cost is dominated equally by selectTrxByMerit and the update of summaries.

Assuming that only a small number of schedules is created, the overall time
complexity of the reconciliation algorithm is O(n2). Furthermore, assuming that
scheduleOne only tries to execute each transaction a small number of times,
the reconciliation algorithm executes O(n) transactions, i.e., O(n) accesses to the
database.

The space complexity of the reconciliation algorithm is O(n2) in the worst case
because, for each transaction, it is kept the list of other transactions that establish
relations with this transaction (O(n) maximum). Additionally, it is necessary to
keep a checkpoint of the database (or use nested transactions to commit or rollback
a complete schedule).

Clustering: As the complexity of reconciling a set of n transactions is O(n2), the
overall complexity of the reconciliation algorithm can be improved if transactions
can be partitioned in independent subsets with a small number of transactions. To
this end, our reconciler partitions transactions into disjoint subsets called clusters,
thus dividing the reconciliation problem into smaller independent sub-problems.
SqlIceCube reconciles each cluster independently in an arbitrary sequential order.

Two transactions are independent if they are not linked by any log relations and
commute. This ensures that transactions from different clusters may be scheduled
in arbitrary order, and that the decision to include or drop a transaction from one
cluster does not affect any other cluster.

2The complexity of scheduleOne can be made O(n logn) by restricting the merit function and
by using priority queues to maintain merits
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Clustering executes in two stages. First, transactions are partitioned by domain
using keys for each transaction (e.g. in a transaction that accesses a calendar, the
days read and written can be the keys), with a complexity linear in the number of
transactions. Then, a subset is re-partitioned according to the commute relation,
for a complexity quadratic in subset size.

In the expected case, clustering executes in O(n) time. The overall complex-
ity of reconciliation is O(n) if clustering partitions transactions in O(n) clusters
with a small number of transaction each. If there is one large cluster with O(n)
transactions, the overall complexity remains O(n2).

In the worst case, clustering executes in O(n2). This happens when the first
stage of reconciliation creates one cluster with O(n) transactions.

3 Automatic extraction of (data) relations

The semantic static relations established among transactions are used by the SqlIce-
Cube reconciler to direct the search. The common approach in semantics-based
reconciliation systems is to require the definition of methods (e.g. IceCube [26]) or
tables (e.g. Sync [21]) to specify semantic information between operations. This
approach has two drawbacks. First, even when it is simple to specify each rule, it
tends to be a repetitive, verbose and error-prone work. Second, it makes difficult
to introduce new operations, as it is necessary to extend the specified rules. In a
relational database system where generic mobile transactions may be submitted,
these drawbacks make it impossible to use a similar approach.

In SqlIceCube we have designed a mechanism to automatically infer the data
relations between mobile transactions (log relations are naturally added by appli-
cations when they submit complex operations composed by several transactions).
To this end, the code of mobile transactions is statically analyzed in order to extract
the information used to infer the relations between transactions. In this section we
detail the basic inference mechanism. In the next section we describe extensions
to handle more complex mobile transactions.

3.1 Extract information

To extract information from a mobile transaction, the transaction program is stat-
ically analyzed checking all execution paths. For each path that ends in a commit
statement, the following group of information is extracted:

Semantic read set The semantic read set contains the semantic description of
each relevant read data item (if the read value is not used, it is not relevant).
This information is obtained from select statements.

Semantic write set The semantic write set contains the semantic description of
each written data item. This information is obtained from insert, update and
delete statements.
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1 BEGIN
2 SELECT stock,price INTO l_stock,l_price FROM products
3 WHERE id = 80;
4 -- l_stock = read(products,id=80,stock)
5 -- l_price = read(products,id=80,price)
6 IF l_price <= 100 AND l_stock >= 10 THEN
7 -- as the contrary leads to a rollback
8 -- precond(read(products,id=80,stock)>=10 AND
9 -- read(products,id=80,price)<=100)

10 UPDATE products SET stock = stock - 10 WHERE id = 80;
11 -- update(products,id=80,stock,stock-10)
12 INSERT INTO orders
13 VALUES (newid,8785,80,10,l_price,’to process’);
14 -- insert(orders,(id,client,product,qty,price,status),
15 -- (647,8785,80,10,l_price,’to process’))
16 COMMIT;
17 ELSE
18 ROLLBACK;
19 ENDIF;
20 END;

Figure 4: Information extracted from a mobile transaction that adds an order in a mobile
sales application.

Precondition set The precondition set contains all conditions in the given exe-
cution path. This information is obtained from if instructions (loops are
discussed later).

The semantic description of a data item includes the name of the table, the
name of the column and the condition used to refer the data item.

Example: : Figure 4 shows, as comments (lines starting with - -), the informa-
tion that can be extracted from the simple mobile transaction that adds a new order
in a mobile sales application. The select statement at line 2 associates the semantic
description of the read data item with the given variables.

During static analysis, both values should be considered for conditions speci-
fied in if instructions. In this example, as considering the condition false leads to
a rollback, there is no need to consider this possible execution path. Considering
the condition true leads to a commit statements. Therefore, the given condition is a
precondition to the success of the transaction: the correspondent semantic precon-
dition is added to the precondition set.

The semantic descriptions of written data items are directly extracted from the
update and insert statements at lines 10 and 12-13. These descriptions compose
the semantic write set for the transaction. The semantic read set is composed by all
semantic descriptions of read data items that are used in the preconditions or write
statements. In this case, as data item read at line 2 are used in the precondition
at line 6, the semantic read set is composed by the description of those read data
items. From this mobile transaction, a single set of static information is extracted
as there is only one execution path leading to a commit statement.
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3.2 Infer relations

The relations between each pair of transactions are inferred comparing the seman-
tic information extracted from each transaction. As this information only contains
the semantic description of each data item, it is necessary to verify if the conditions
expressed in the different semantic descriptions refer the same data items or not.
This verification includes not only the data items read or written but also the data
items used to select them (these data items are indirectly read). In database sys-
tems, similar analysis are executed in the context of query optimization [13] and
semantic caching [6].

Given two transactions t1 and t2, each one with a single group of information,
the following rules are used to infer each data relation.

Commute (default:false) t1 does not commute with t2 if t1 reads a data item writ-
ten by t2 (or vice-versa), or t1 writes a data item written by t2 (or vice-versa)
unless all t1 writes commute with all t2 writes (and vice-versa).

Helps (default:true) t1 helps t2 if t1 writes changes the database in a favorable
way for t2 preconditions to be true.

Prejudices (default:true) t1 prejudices t2 if t1 writes changes the database in a
prejudicial way for t2 preconditions to be true.

Makes possible (default:false) t1 makes possible t2 if t1 writes makes t2 precon-
ditions true.

Makes impossible (default:false) t1 makes impossible t2 if t1 writes makes t2 pre-
conditions false.

When there is more than one possible execution path in each program (and
several groups of information are obtained from each transaction), it is necessary
to analyze the different possible combinations. The default value is assumed if
different results are obtained from different combinations.

Sometimes it is impossible to determine exactly if two semantic descriptions
refer the same data item or not. For example, two select statements that use condi-
tions over different columns to select the records to read in the same table cannot
be precisely compared. In this case, if the comparison’s result is important to eval-
uate if some relation is established between two transactions, the default value for
the relation is assumed.

The default values, presented in parenthesis before, were chosen guarantee the
safety of the reconciliation algorithm. To this end, the helps relation is set to true,
thus guaranteeing that a transaction is removed from the set of bad transactions.
The prejudices relation is also set to true to compensate the effect of a possibly
incorrect helps relation in the merit of a transaction. The makes impossible relation
is set to false to guarantee that no transaction is moved to the badTrx set unless
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BEGIN
SELECT status INTO l_status FROM orders WHERE id = 3;

-- l_status = read(orders,id=3,status)
IF l_status = ’to process’ THEN

-- precond(read(orders,id=3,status)=’to process’)
UPDATE orders SET status = ’cancelled’ WHERE id = 3;

-- update(orders,id=3,status,’cancelled’)
UPDATE products SET stock = stock + 30 WHERE id = 80;

-- update((products,id=80),stock,stock+30)
COMMIT;

ELSE
ROLLBACK;

ENDIF;
END;

Figure 5: Information extracted from a mobile transaction that cancels an order in a mobile
sales application.

it is known that the execution of some transaction makes the preconditions of the
other transaction false.

The value of the commute relation is conservatively set to false to guarantee
that transactions that may influence each other are clustered together. If the run-
ning time of reconciliation is critical, this value can be assumed true to improve the
clustering results. In this case, it may be impossible to achieve the best reconcilia-
tion result as it is impossible to create some relevant schedules.

3.3 Examples

Mobile sales application: In the first example, we consider two types of mo-
bile transactions submitted in the context of a mobile sales application. The first,
presented in figure 4, adds a new order. The second, cancels an order if it has not
been processed yet, as shown in figure 5.

The information that can be extracted from each mobile transaction is shown,
as comments, in the figures. Let a be an add transaction and c be a cancel trans-
action acting on the same product. The system infers the following relations. a
and c do not commute, as a reads the stock of product with id = 80 and c writes
(updates) it. c helps a, as adding a positive value to the stock helps the stock to
be bigger than some constant. No other relations exist. The inferred relations
are the expected ones, leading the reconciler to execute the cancel transaction be-
fore executing the add transaction, thus improving the chances of committing both
transactions.

As expected, two mobile transactions adding a new order for the same product
do not commute and each one prejudices the other, as subtracting a positive value
from the stock reduces the chances of the stock being larger than some constant.

Two mobile transactions cancelling the same order do not commute and each
one makes impossible the other, as setting the order state to cancelled makes the
precondition expressed in the transaction false. This is the expected behavior as an
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--- RESERVES ROOM ’Ballroom A’ FOR DAY ’16-FEB-2002’
BEGIN
SELECT count(*) INTO cnt FROM datebook

WHERE day=’16-FEB-2002’ AND room=’Ballroom A’;
-- cnt = read(datebook,day=’16-FEB-2002’ AND
-- room=’Ballroom A’,count(*))

IF (cnt = 0) THEN
-- precond(read(datebook,day=’16-FEB-2002’ AND
-- room=’Ballroom A’,count(*))=0)

INSERT INTO datebook
VALUES( ’16-FEB-2002’, ’Ballroom A’, ’Demo BLUE THING’);

-- insert(datebook,(day,room,info),
-- ’16-FEB-2002’,’Ballroom A’,’Demo BLUE THING’))

COMMIT;
ENDIF;
ROLLBACK;

END;

Figure 6: Information extracted from a mobile transaction that inserts an appointment in
a shared calendar.

--REMOVE RESERVATION
BEGIN
SELECT count(*) INTO cnt FROM datebook WHERE day=’16-FEB-2002’ AND

room=’Ballroom A’ AND info=’Demo BLUE THING’;
-- cnt = read(datebook,day=’16-FEB-2002’ AND
-- room=’Ballroom A’ AND info=’Demo BLUE THING’,count(*))

IF (cnt > 0) THEN
-- precond(read(datebook,info=’Demo BLUE THING’ AND
-- day=’16-FEB-2002’ AND room=’Ballroom A’,count(*)) > 0)

DELETE FROM datebook WHERE day=’16-FEB-2002’ AND room=’Ballroom A’;
-- delete(datebook,day=’16-FEB-2002’ AND room=’Ballroom A’)

COMMIT;
ENDIF;
ROLLBACK;

END;

Figure 7: Information extracted from a mobile transaction that cancels an appointment in
a shared calendar.

order can only be cancelled once.
Two mobile transactions acting on different products and orders commute be-

cause they do not access the same data items.

Shared calendar: In the second example, we consider typical transactions sub-
mitted in the context of a shared calendar used to maintain meeting room reser-
vations. In the transaction presented in figure 6, a new reservation for a room is
added if possible. In the transaction presented in figure 7, an existing reservation
is removed.

The systems infers the following relations. Any two transactions that refer
non-overlapping reservations commute as they access different data items. Trans-
actions with overlapping transactions do not commute. For these transactions, the
following additional relations are inferred.
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For two transactions that insert a new reservation, each one makes impossible
(and prejudices) the other, as the inserted record leads the precondition to be false.

For two transactions that cancel the same reservation, each one makes impos-
sible (and prejudices) the other, as the delete statement guarantees that no record
exists that satisfy the specified precondition.

For a transaction, a, that inserts a new reservation and a transaction, c, that
cancels a reservation, two cases should be considered. If both refer to the same
reservation (i.e. the value of the info field is equal), a makes possible (and helps)
c because the inserted record guarantees that the reservation exists (and the pre-
condition of c is true). Furthermore, c also makes possible (and helps) a because
removing the reservation guarantees that it is possible to schedule a new reserva-
tion for that time and place. The reason for this lies in the fact that it might exist
or not an identical reservation in the initial database. In this case, the static re-
lations do not help the reconciler to decide which transaction should be executed
first. Assume, without loss of generality, that c should be executed before a and
the reconciler selects a first. In this case, a fails and it is moved to the set of bad
transactions. However, after executing c, a is removed from the set of bad transac-
tions and it will be selected in one of the following steps. Thus, both transactions
are successfully executed.

If a and c refer to different reservations (i.e. the value of the info field is differ-
ent), c makes possible (and helps) a as removing the reservation guarantees that it
is possible to schedule a new reservation for that time and place. However, unlike
before, a does not makes possible (or helps) c because the inserted record does not
satisfy the condition of the select statement — the info field is different. Thus, as
expected, the reconciler will cancel appointments before trying to schedule new
appointments for the same time and place.

4 Extensions

In this section we further detail how mobile transactions are processed to infer
static relations and discuss some extensions to the basic approach described so far.

4.1 Comparison of semantic descriptions

Sometimes it is impossible to compare precisely two semantic descriptions because
they include conditions over different columns of the same table or indirections
(i.e., they use values read in previous select statements). Consider the transaction
that cancels an order, shown in figure 8. In this transaction, the update statement
at line 5, depends on the values of the order being cancelled (read at line 2). Thus,
it is impossible to directly verify if this transaction commutes with a transaction
that inserts an order because the product involved in the cancelled order is not
known. Furthermore, even if the product is known, it is impossible to know if this
transaction helps or prejudices a transaction that inserts an order because it is not
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1 BEGIN
2 SELECT status INTO l_status,l_prd,l_qty FROM orders WHERE id = 3;
3 IF l_status = ’to process’ THEN
4 UPDATE orders SET status = ’cancelled’ WHERE id = 3;
5 UPDATE products SET stock = stock + l_qty WHERE id = l_prd;
6 COMMIT;
7 ELSE
8 ROLLBACK;
9 ENDIF;

10 END;

Figure 8: Mobile transaction that cancels an order in a mobile sales application.

known if the value of l qty if positive or negative.
As the details of an order are expected to be constant during reconciliation (i.e.,

none of the transactions that are under reconciliation will modify the order details),
this problem can be solved reading the details of the order from the database and
using them as constants during the reconciliation process. Thus, it is possible to
obtain as much information from the transaction of figure 8 as from the transaction
of figure 5. As statements that modify a record usually specify its key, it tends to
be easy to verify if a record can be modified by any transaction.

An identical approach can be used to compare semantic descriptions that use
conditions over different columns by reading the extra information needed. For
example, in the shared calendar example presented previously, each appointment
could be identified by an unique identifier. In this case, the transaction that cancels
an appointment would use this identifier to verify if the appointment exists and
to remove it (unlike the transaction presented in figure 7 that uses the appointment
details). However, as the appointment details are constant, we can read these details
and use them as constants to obtain as much information as in the transaction of
figure 7. Thus, the systems can infer the same semantic relations.

4.2 Modifying multiple records

A single SQL statement can modify multiple records. The basic approach de-
scribed so far addresses this problem, as each semantic description may refer more
than one record.

A mobile transaction can also include a loop to read and modify a sequence of
records. Two cases must be considered.

When the value of the condition that controls the loop is known, the analysis of
the loop is trivial: it is just necessary to evaluate the code inside the loop as many
times as needed. An example of this situation is a for instruction that only involves
constant values (e.g. for i in 1..3 loop) or that include values read from the database
that can be solved as described in the previous subsection (e.g. a cursor variable
that iterates over a set of constant records).

When the value of the condition that controls the loop is not known, it may be
very difficult or impossible to extract precise information. We are still investigating
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BEGIN -- First alternative
SELECT stock,price INTO l_stock,l_price FROM products

WHERE id = 80;
IF l_price <= 100 AND l_stock >= 10 THEN

UPDATE products SET stock = stock - 10 WHERE id = 80;
INSERT INTO orders
COMMIT;

ENDIF; -- Second alternative
SELECT stock,price INTO l_stock,l_price FROM products

WHERE id = 47;
IF l_price <= 85 AND l_stock >= 10 THEN

UPDATE products SET stock = stock - 10 WHERE id = 47;
INSERT INTO orders
COMMIT;

ENDIF;
ROLLBACK;

END;

Figure 9: Mobile transaction that specifies two alternative orders in a mobile sales appli-
cation.

this problem. Currently, our prototype sets the default relations for transactions that
include this type of loops.

4.3 Handling long transactions

Long transactions that access many data items may end up having contradictory
relations with (many of) the other transactions. In this situation, the inferred rela-
tions are not useful for reconciliation, leaving the reconciler with no information
for ordering the execution of the transactions.

To avoid this problem, the SqlIceCube API allows programmers to submit com-
plex operations as a composition of smaller transactions linked by suitable log re-
lations. Furthermore, the SqlIceCube system provides a preprocessing mechanism
that can split each mobile transaction into smaller transactions linked by suitable
log relations. This preprocessing step may be run at the client when a mobile trans-
action is submitted.

The following preprocessing rules are applied:

• A transaction composed of a set of alternative actions coded as a sequence of
if instructions is split into an ordered set of alternative transactions (using the
alternatives and weak predecessor-successor log relations), each one with a
single alternative action. For example, the transaction in figure 9 is split into
two transactions identical to the ones presented in figure 2.

• A long transaction composed of independent sequences of statements may
be split into a parcel of smaller transactions. This rule is only applied if the
application allows the system to do it, as parcel execution may not comply
with the isolation property of transactions.
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Other log relations can also be automatically inferred between transactions sub-
mitted in the same mobile client. For example, when a transaction reads a data item
inserted by a previous transaction, the strong predecessor-successor log relation
can be added between the older and the new transaction.

5 Status

We have implemented a prototype of the SqlIceCube reconciliation system in Java.
Our prototype has five major components.

First, the database system. We are currently using the hsqldb Java Database En-
gine [1], but any SQL database engine could be used. We implement the checkpoint
primitive needed by the SqlIceCube reconciler by making a copy of the database
files.

Second, the PL/SQL interpreter that executes mobile transactions on top of a
generic SQL database. Our prototype interprets an extended subset of PL/SQL; the
parser is written using JavaCC.

Third, the module that extracts information from mobile transactions. This
module analyzes the abstract parse trees built by the PL/SQL parser.

Fourth, the module that infers relations using the extracted information. This
module uses the JSolver general-purpose constraint solver to verify the compati-
bility of semantic descriptions.

Finally, the generic semantics-based reconciler that creates and executes a sched-
ule combining sets of mobile transactions. To this end, we have modified the Ice-
Cube reconciler [2].

Some issues of the prototype are still being worked on, namely the full interpre-
tation of PL/SQL (in the PL/SQL interpreter) and SQL (in the semantic inference
module).

6 Benchmarking SqlIceCube

In this section we present measurements to evaluate both the quality of reconcilia-
tion (by the size of the schedules), and its efficiency (by execution time).

This uses transactions submitted in the context of a shared calendar, as pre-
sented in section 3.3. The benchmark inputs are based on a trace from actual Out-
look calendars, modified to control the rate of conflicts and to include alternatives.

The logs contain requests for new appointments, each one composed by one
or more alternative elementary appointment requests. We varied the number of
requests and the number and size of possible clusters. The average number of
alternative elementary requests per request is two. Thus, results showing 100 re-
quests represents the reconciliation of 200 elementary requests submitted as basic
transactions identical to the one presented in figure 2. Note that execution times in-
cludes: partitioning the reconciliation problem; initialization for inferring semantic
relations and computing summaries of relations; checkpointing, for creating and
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Figure 10: Size of reconciliation.

restoring database checkpoints; scheduling, for creating schedules; and schedule
execution to run schedule against the database.

In each cluster, the number of different elementary requests is no larger than
the number of requests. For instance, in the example of Figure 1, for the three re-
quests, there are only three different basic transactions (scheduling the appointment
for ‘9am room A’, ‘9am room B’ and ‘9am room C’). This situation represents a
hard problem for reconciliation because the right elementary request needs to be
selected in every request (selecting other alternative in any request may lead to the
impossibility of committing any transaction for some requests).

In these experiments, all transactions have equal value, and longer schedules
are better. A schedule is called a max-solution when no request is dropped (i.e.
one elementary request from each request can be committed). A schedule is said
optimal when the highest possible number of requests has been executed success-
fully. A max-solution is obviously optimal; however not all optimal solutions are
max-solutions because of unresolvable conflicts. Since SqlIceCube uses heuristics,
it might propose non-optimal schedules; we measure the quality of solutions com-
pared to the optimum. (Analyzing a non-max-schedule to determine if it is optimal
is an offline, a posteriori process.)

The experiments were run on a generic PC running Windows XP with 256
Mb of main memory and a 1.1 GHz Pentium III processor. SqlIceCube was run
using the Sun’s Java virtual machine version 1.4.0 01. The hsqldb database runs
in standalone mode, with the database state being safely stored on disk after each
transaction (i.e., we are not using the hsqldb mode that runs a database completely
in memory). Results presented are the average of 10 runs using different sets of
requests. Any comparisons present results obtained using exactly the same inputs.

6.1 Single cluster

We first evaluate the SqlIceCube heuristics without clustering. Our first set of
inputs gives birth to a single cluster.

Figure 10 compares SqlIceCube with a syntactic scheduling algorithm, to jus-
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Figure 12: Decomposition of reconciliation time (single cluster).

tify our optimization approach. We choose the concatenation of the logs, but any
syntactic algorithm will have similar worst-case performance. For instance, in
Bayou [30], transactions are ordered as they are received in the primary server,
which may lead to exactly the same order as concatenation order.

As expected, the results of semantic-directed search are better than syntactic or-
dering. In our tests, SqlIceCube could always find the best solution. With syntactic
ordering, approximately 13% of the requests are dropped. The baseline marked
“Single log” in the graph represents the simplest non-trivial scheduler that guaran-
tees absence of conflicts (it selects all transactions from a single log and drops all
transactions from the other).

The drop rate grows very slightly with size. Although the improvement may
appear small, remember that dropping a single transaction may have a high cost —
for instance missing an important meeting or violating the terms of a high-value
contract.

Figure 11 shows the execution time of SqlIceCube reconciliation vs. a log-
concatenation (hence suboptimal) scheduler. As expected, SqlIceCube is slower.
This is in line with the expected complexities, O(n2) in SqlIceCube and O(n) for
concatenation.

Figure 12 decomposes the execution time into three parts. First, initialization
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Figure 14: Execution time to solution (with and without clustering)

time, where relations are inferred and summaries of relations computed. This rep-
resent most of the execution time; as expected, it presents a non-linear growth
(O(n2)). Second, the time spent in partitioning and checkpointing; this component
is negligible. Third, the search time, i.e., the time to create and execute the sched-
ules. Unlike what we expected, the search time line does not show a clear quadratic
increase. This is due to the small constants in search (when compared with larger
constants for relation inference). These results show that relation inference domi-
nates the reconciliation. Thus, if relations inference can be executed prior to recon-
ciliation it is possible to improve reconciliation results (although complexity would
remain O(n2)).

In these experiments, the heuristic search ends when a max-solution is found,
or after a given amount of time (two minutes). Figure 13 shows how quickly a
max-solution is reached. The first schedule is a max-solution in over 80% of the
cases. In all experiments, a max-solution was found in the first two iterations. This
shows that our search heuristics work very well, at least for this series of tests. A
related result is that in this experiment, even non-max-solutions were all within 1%
of the max size.
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Figure 15: Decomposition of reconciliation time (multiple clusters).

6.2 Multiple clusters

We now show the results when it is possible to cluster the transactions. This is
the expected real-life situation. For instance file-system traces obtained from real
usage show that concurrent updates of the same file are rare [31, 18]. We expect
that in a more collaborative environment, the number of concurrent updates may
increase, but still remain small.

The logs used in these experiments contain a variable number of requests, and
are constructed so that 25% of the elementary request can be clustered alone; 25%
of the remaining elementary request are in clusters with two transactions; and so
on. Thus, as problem size increases, the size of the largest cluster increases slightly,
as one would expect in real life. For instance, when the logs contain 1000 requests,
the largest cluster contains the elementary request from 12 requests. The number
of clusters is approximately half of the number of transactions; this ratio decreases
slightly with log size. The average number of alternatives per request is two.

SqlIceCube always finds the optimal solution, whether clustering is in use or
not. In contrast, using log concatenation, about 8% of the requests were dropped.
This value is smaller than in the previous subsection because a large fraction of the
requests have zero or close to zero related transactions; e.g., 25% of the transactions
commute with all other transactions, thus, they can be scheduled in any order.

Figure 14 shows the time to find a max-solution, with clustering turned on or
off. As expected a solution is obtained more quickly when clustering is used. As
the number of clusters grows almost linearly with the number of transactions and
the size of the largest cluster grows very slowly, reconciliation time is expected to
grow almost linearly. The results confirm this conjecture. Moreover, the decom-
position of the reconciliation time of figure 15, shows that all components of the
reconciliation time grow linearly, as expected.
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7 Deployment

SqlIceCube is a generic semantics-based reconciliation engine that can be used
to combine concurrently executed mobile transactions. In this section we present
three scenario where SqlIceCube could be used easily to improve reconciliation
results.

7.1 In the context of optimistic replication

Mobile database systems that use optimistic replication allow operations to be sub-
mitted in disconnected devices. These operations are considered tentative until
they are propagated to a server where they are scheduled and committed by some
form of global agreement. In general, a set of operations is submitted to be ordered
simultaneously.

For example, in the Bayou system [30], a central server orders sets of transac-
tions received from other servers during epidemic synchronization sessions. In the
Deno system [15], successive election rounds order sets of operations simultane-
ously proposed in several sites.

Instead of defining an arbitrary order among transactions under consideration,
SqlIceCube could be used in these systems to define an execution order that allows
the commitment of a larger subset of transactions.

7.2 In the context of conflict-avoidance

Mobile database systems can guarantee the results of transactions in a disconnected
mobile device by including a conflict-avoidance mechanism. This mechanism can
guarantee the transactions executed by one or more users by restricting the trans-
actions that can be executed by all other users. For example, locks [11] are a
traditional mechanism of conflict avoidance: the user that obtains the lock can
guarantee that her transactions can be executed without conflicts by forbidding the
execution of transactions by other users.

Conflict-avoidance mechanisms suitable for mobile environments have been
proposed to support mobile sales applications (escrow techniques) [17] and generic
database applications (reservation in the Mobisnap system) [25].

These conflict-avoidance mechanisms can be combined with optimistic repli-
cation, thus guaranteeing results in mobile devices without forbidding the submis-
sion of tentative transactions that cannot be locally guaranteed [25]. These tentative
transactions cannot be committed until the locks (or similar technique) used by the
conflict-avoidance mechanism are released or expire. At that point in time, there
might be a set of transactions awaiting execution. Using SqlIceCube to reconcile
this set of transactions can improve the number of transactions that can be executed.
For example, this approach could be used in Mobisnap [25] to execute transactions
awaiting reservation expiration.
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7.3 Batch-oriented systems

Batch-oriented systems, where sets of transactions are submitted for late execu-
tion, are a perfect scenario for using SqlIceCube. In these systems SqlIceCube can
be used to define the execution order that allows more transactions to be commit-
ted. Furthermore, it is possible to, at least, partially infer relations before the time
selected to start transaction execution.

8 Related work

8.1 Reconciliation

Several systems use optimistic replication and implement some form of reconcil-
iation (see Saito and Shapiro [28] for a recent survey). The existing approaches,
although suitable for the intended applications, tend to present several shortcom-
ings when applied in a general-purpose database setting.

Application-specific reconciliation systems, e.g. CVS [5], are limited to a sin-
gle application. Adapting the implemented reconciliation strategies to different
applications tend to be very difficult or even impossible.

Systems that reconcile by comparing final tentative states, e.g. Lotus Notes [14]
and Coda [18], or using the read and write set of client execution, e.g. Oracle
Lite [23], cannot exploit the sematic information associated with the executed op-
eration, thus leading to the detection of false conflicts. Although this approach
may be the unique available in some settings (e.g. file systems), reconciliation sys-
tems benefit from exploring the semantic information associated with the executed
operations.

Log-based systems, as SqlIceCube, use the logs of executed operations dur-
ing reconciliation. Recent optimistically-replicated systems include Bayou [30],
TACT [32] and Deno [15]. Balasubramaniam and Pierce [4] and Ramsey and Csir-
maz [27] study file reconciliation from a semantics perspective.

In the two-tier replication model [10], mobile nodes may propose tentative up-
date transactions. These transactions are propagated to a base node, where they are
reapplied to the object master copy. An acceptance rule can be specified to verify
the validity of transaction execution. Invalid transactions are aborted and diagnos-
tic messages are returned to the mobile nodes. In Bayou [30], data is replicated over
a group of servers that synchronize their state using epidemic techniques. Bayou
updates include information to allow generic automatic conflict detection and res-
olution through dependency checks and merge procedures. A primary server is
responsible for defining the commit order for updates — all servers execute the up-
dates in the commit order. The SqlIceCube mobile transactions can be seen as an
PL/SQL implementation of the updates proposed in these systems. However, un-
like these systems, updates can be reordered to obtain a better reconciliation result
(instead of relying on a pure syntactic order).
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Lippe et al. [20] search for conflicts exhaustively comparing all possible sched-
ules. Their system examines all schedules that are consistent with the original order
of operations. A conflict (to be resolved manually) is declared when two sched-
ules lead to different states. Examining all schedules is untractable for all but the
smallest problems.

Phatak and Badrinath [24] propose a transaction management system for mo-
bile databases. A disconnected client stores the read and write sets (and the values
read and written) for each transaction. The application specifies a conflict reso-
lution function and a cost function. The server serializes each transaction in the
database history based on the cost and conflict resolution functions. As this system
uses a brute-force algorithm to create the best ordering, it does not scale to a large
number of transactions.

IceCube [16, 26] was the first to treat reconciliation as an optimization prob-
lem that needs to be addressed using heuristic techniques. The first version only
supported a single semantic relation that indicates in which order two operation
should be executed. A later version presents a rich set of relations, including the
distinction between log and data constraints (object constraints in their terminol-
ogy). However, IceCube reconciler treats reconciliation as a constraint-solving
problem. As discussed in section 2.2.2, this approach does not handle pairs of
compensating operations. Our planning-like approach seems more appropriate to
handle reconciliation problems. We have also defined a different set of relations
suitable to the new paradigm. Furthermore, by inferring semantic relations auto-
matically, our system greatly simplifies the use of semantics-based reconciliation
and makes possible the definition of new transaction at any time.

Other semantics-based reconciliation systems reorder the execution of opera-
tions. In Sync [21], programmers may define reconciliation rules for each pair of
operations of each object. These rules can define the order of execution for oper-
ations (or define a new operation). Operational transformation algorithms [29] re-
write update parameters to enable order-independent execution of non-conflicting
operations, even when they do not commute.

In these systems, programmers must express the semantic information needed
by the reconciliation engine. However, the overhead of expressing the semantic
information needed by the reconciliation engine is usually non-trivial. Therefore,
some programmers will not be willing to execute this extra work or end up cre-
ating bad semantic rules that leads to poor reconciliation results. We believe that
automating the inference of semantic information is the key to allow semantics-
based reconciliation to be used in more applications.

8.2 Static analysis

Static analysis [8] of programs has been used before in several systems to verify the
correctness [7, 12, 3] and equivalence of programs [19]. We have introduced any
new static analysis technique . However, our semantic inference module presents
the following uncommon characteristics: it is executed at reconciliation runtime,
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the information extracted from each program is used to infer relations between two
programs (other than equivalence) and it is combined with dynamic evaluation.

To our knowledge, this work is the first to use static analysis to infer semantic
information for reconciliation.

9 Final Remarks

SqlIceCube is a general-purpose semantics-based reconciliation system for mobile
databases. The system includes a semantic inference module that automatically
extracts semantic information from the code of mobile transactions. This informa-
tion, exposed as a set of static relations among transactions, is used by the basic
reconciler to create near-optimal reconciliation results.

To our knowledge, SqlIceCube is the first to automatically infer the semantic
information needed in reconciliation. This approach simplifies the use of semantics-
based reconciliation by eliminating the overhead of writing long/complex rules to
expose the semantics of operations. Thus, semantics-based reconciliation can be
used without any extra effort by any programmer.

The SqlIceCube reconciler creates near-optimal schedules using an heuristic
search approach. The approach is general and supports combinations of transac-
tions across a variety of different applications. This approach, used previously in
IceCube [26], has the potential to improve the reconciliation result, thus reducing
the (possibly high) impact of dropping any transaction executed tentatively.

Unlike previous systems [26], SqlIceCube treats the optimization problem as
a planning-like problem instead of a constraint-solving problem. Furthermore,
SqlIceCube defines a new set of relations that can be used to expose semantic
information in reconciliation problems. This set of relations is designed to be used
with the new planning-like reconciliation approach and to be easily extracted from
the code of mobile transactions automatically.

The examples presented in this papers show that SqlIceCube correctly infer se-
mantic relations from different typical mobile applications. The results reported,
obtained with a non-optimized prototype, suggest that the reconciler can find near-
optimal solutions, that improve results obtained using simpler syntactic approaches,
in reasonable time and scale to large logs. The deployment scenarios discussed in
section 7 show that SqlIceCube can be used in different settings to improve the
number of transactions that can be executed with success. To further validate our
approach, we intend to continue studying the use of SqlIceCube to support different
types of applications.
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[27] Norman Ramsey and Előd Csirmaz. An algebraic approach to file synchronization. In 9th Int. Symp. on the
Foundations of Softw. Eng., Austria, September 2001.

[28] Yasushi Saito and Marc Shapiro. Replication: Optimistic approaches. Technical Report HPL-2002-33,
Hewlett-Packard Laboratories, March 2002.

[29] Chengzheng Sun and Clarence Ellis. Operational transformation in real-time group editors: issues, al-
gorithms, and achievements. In Proc. Conf. on Comp.-Supported Cooperative Work (CSCW), page 59,
November 1998.

[30] Douglas Terry, Marvin Theimer, Karin Petersen, Alan Demers, Mike Spreitzer, and Carl Hauser. Managing
update conflicts in Bayou, a weakly connected replicated storage system. In Proc. 15th Symp. on Op. Sys.
Principles, Copper Mountain CO (USA), December 1995. ACM SIGOPS.

[31] An-I Andy Wang, Peter Reiher, and Rajive Bagrodia. A simulation framework and evaluation for opti-
mistically replicated filing environments. Technical Report CSD-010046, Computer Science Department,
University of California, Los Angeles, Los Angeles CA (USA), 2001.

[32] Haifeng Yu and Amin Vahdat. Combining generality and practicality in a Conit-based continuous consis-
tency model for wide-area replication. In 21st Int. Conf. on Dist. Comp. Sys. (ICDCS), April 2001.

30


