
Designing a commutative replicated data type for

cooperative editing systems

Nuno Preguiça∗, Marc Shapiro#

Technical report 2-2008 DI-FCT-UNL

INRIA Paris-Rocquencourt & LIP6 Paris, France

∗ CITI/DI
Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa
Quinta da Torre, 2829-516 Caparica, Portugal

Designing a commutative replicated data type for

cooperative editing systems∗

Nuno Preguiça
CITI/DI, FCT, Univ. Nova de Lisboa

Marc Shapiro
INRIA Paris-Rocquencourt & LIP6

Abstract

Cooperative editing systems enable distributed users to collaborate by
concurrently editing a shared document, but care is required to ensure
convergence and correctness. This problem turns out to be surprisingly
complex. In this paper, we present a new approach for managing repli-
cated data in cooperative editing systems, Commutative Replicated Data
Types (CRDT). In a CRDT, all concurrent operations commute. Along
with causal ordering, this suffices to guarantee convergence and preserve
correctness, requiring no further concurrency control. We propose a novel
CRDT for concurrent editing, the treedoc, which requires considerably
less storage than the state of the art. Furthermore, a novel technique,
background consensus, is used to clean up redundant metadata without
interfering with ordinary edit operations. This mechanism is generic, and
could be used to improve other algorithms.

1 Introduction

Cooperative editing systems are an important class of groupware applications.
These systems allow users to cooperate by editing a shared document concur-
rently in synchronous (e.g. Groove [6], CoWord [33] and Google Docs [8]) or
asynchronous mode (e.g. CVS [3]). These systems maintain a replica of the
document at every participating site.

As user can edit the document concurrently, such systems must control con-
currency in order to guarantee that replicas eventually converge to a common
state. Additionally, they must ensure correctness, i.e., that users’ “intentions”
are preserved [28].

∗This work is supported in part by the EU FP6 project Grid4All, the French ARA
project Respire, the French ARC project Recall, and the Portuguese FCT/MCTES project
POSC/59064/2004, with FEDER funding.

Various solutions have been proposed in the literature. Pessimistic ap-
proaches, such as turn-taking or serialising the actions [11], avoid replica di-
vergence, by allowing only one user to edit (some unit of) the document at a
given time. This is considered unsuitable for collaborative editing, since it re-
stricts cooperation. This problem is even worse in asynchronous or disconnected
settings, because an unavailable user might block all other users.

Optimistic approaches allow replicas to temporarily diverge but guarantee
eventual convergence [26]. The optimistic approahc of operational transfor-
mation (OT) has become the solution of choice in the groupware community
[6, 29, 28, 15, 18, 31, 14, 16]. However, this approach is complex and error-
prone, as problems found in previously proposed algorithms show [19].

In this paper, we suggest a different approach: design replicated data types
such that concurrent operations commute with one another. Let us call such
a type a commutative replicated data type or CRDT. CRDT replicas trivially
converge. However, designing a non-trivial CRDT is difficult.

Although the advantages of commutativity are well known, the problem of
designing data types for commutativity has been neglected. Recently, Oster et
al. proposed a replicated character buffer CRDT called WOOT [20]. WOOT op-
erations commute, because updates are non-destructive, and because the iden-
tity of a character does not change with concurrent edits. However, WOOT
consumes a lot of storage, because it has a high metadata overhead, and be-
cause deleted text cannot be discarded.

This paper presents the design of a novel, non-trivial CRDT for concurrent
editing, called treedoc. The treedoc data structure is a binary tree that sup-
ports non-destructive edits and invariant identification. Since it is a CRDT,
convergence is guaranteed. We also prove that it preserves user intention.

We extend the binary tree structure to support concurrency and to save
space by flattening the tree. To ensure such structural operations commute
with edits, edits have precedence. Structural changes require a consensus, but
we push the associated latency into the background, off the critical path of edit
operations.

The treedoc design is simple and elegant; meta-data overhead is low; deleted
information can be forgotten; and identifiers are kept short. Common edit
operations respond locally and suffer no network latency.

Treedoc supports block operations, but this is out of the scope of the current
paper; we refer the interested reader to the companion technical report [1].

In summary, the contributions of this paper are the following:

• We present the Commutative Replicated Data Type (CRDT) concept, a
data type for which concurrent operations commute. CRDT replicas are
guaranteed to converge, under simple and standard assumptions.

• We identify two alternative approaches to commutativity: genuine vs. prece-
dence. Genuine is better, but is not always possible. Genuine commuta-
tivity preserves user intentions.

3

Figure 1: Three sites with replicas of object x. Site 1 initiates operation f ,
Site 2 initiates g. Site 3 replays them in the order g; f , whereas Site 1 replays
g after f .

• We present the design of treedoc, a non-trivial, space-efficient, responsive
CRDT for distributed editing. Edit operations are genuinely commutative.

• We notice that structural operations require consensus but have lesser
precedence than edits. The consensus is moved into the background, and
aborts if it conflicts with an essential operation.

The paper proceeds as follows. We describe our system model in Section 2.
Section 3 describes the shared buffer abstract data type. We suggest a simple
implementation of this data type in Section 4. The design is extended to support
concurrent inserts in Section 5. In Section 6, we examine how to convert to an
even more efficient representation and back. Section 7 compares with previous
work. Section 8 compares the costs of treedoc with WOOT. Section 9 concludes
the paper.

2 System model

2.1 Replicated execution and eventual consistency

We consider an distributed system, consisting of N sites (computers) connected
by a network, storing replicas of shared objects (e.g., object x replicated at three
sites in Figure 1). The system is asynchronous, i.e., we do not assume an upper
bound on message delay.

A user accesses an object through his local replica, initiating operations at
the current site. After executing at the initiator site, operations are reliably
transmitted to the other sites. Eventually the operation is delivered and re-
played. Thus, all sites execute the same operations (either by local submission
or by remote replay), in some sequential order, but not necessarily in the same
order.

We say operation o happens before o′ (noted o → o′) if some site initiates
o′ after the same site has executed o.1 We require that if o → o′, then all
sites execute o before o′ (although not necessarily immediately before). This is
sometimes called the “causal ordering” property. Causal ordering is a standard

1 The site executes o either because it was initiated locally, or because it was initiated
at another site and delivered here in a message. Therefore, the → relation is identical to
Lamport’s happens-before [11].

4

requirement of cooperative editing systems, and techniques for ensuring it are
well known [11, 21].

Operations are concurrent if neither happens before the other: o ‖ o′ def=
¬(o → o′) ∧ ¬(o′ → o).

Informally, two operations commute iff executing them in either order from
the same state leads to the same state. A Commutative Replicated Data Type
(CRDT) is a data type where all concurrent operations commute with one an-
other.

We prove that CRDTs guarantee eventual consistency : if CRDT operations
execute in some order consistent with happens-before, the final state of replicas
is identical at all sites. Execution order may differ between sites. For space
reasons, we could not include the proof in the paper, but it is available in a
companion technical report [1]. The proof relies on the fact that non-concurrent
operations execute in the same order at all sites, and confirms the intuition that
concurrent operations may execute in any order, since they commute.

2.2 Genuine commutativity vs. precedence

Consider some arbitrary state T , and operations α and β, such that execution
sequences 〈T · α〉 and 〈T · β〉 are both correct states. α and β commute, iff, for
any such T , execution sequences 〈T ·α ·β〉 and 〈T ·β ·α〉 are both correct states
and are equivalent.2

There are two basic approaches to ensuring this. We say operations commute
genuinely if each one preserves the effect of the other; i.e., the post-condition
of both operations is satisfied, whatever their relative execution order. This
is the meaning in mathematics, for instance when we say that addition and
subtraction of integers commute.

An alternative is to define a precedence, i.e., one operation masks or destroys
the effect of the other. Thus, if β takes precedence over α: (i) in the order 〈α·β〉,
β overwrites the results of α; but (ii) in the order 〈β ·α〉, α reduces to a no-op.
For instance, most replicated file systems follow the “Last Writer Wins” rule
[26]: when two users write to the same file, the write with the highest timestamp
takes precedence. The write with the lowest timestamp may be lost.

Technically, precedence satisfies the formal definition of commutativity, but
it violates our intuition because the effect of the lesser operation is lost.

We make the standard assumption that objects are independent, hence op-
erations over different objects always commute genuinely. Therefore, without
loss of generality, we may consider a single object. For instance, replicated file
systems assume that files are independent.

Clearly, the genuine approach is preferable to precedence; but precedence is
often easier to achieve. In our proposal, edit operations commute genuinely but
have precedence over internal clean-up operations.

2 We assume that an operation that fails at the initiator has no effect, and is not propagated
nor replayed. Conversely, an operation that succeeds at the initiator must also succeed at every
replay site.

5

2.3 Intention preservation

In this section we give a precise definition of intention preservation in concurrent
editing.

Edit operations operate over a document abstraction, which is an ordered,
sequential list of atoms (e.g., characters). Each user has a replica of the doc-
ument, and can modify it locally by initiating an edit operation. If successful,
this operation is subsequently transmitted to all remote replicas and eventu-
ally replays there. We define two edit operations: insert(insertpos,newatom)
adds atom newatom into the list at position insertpos. Operation delete(delpos)
removes the atom at position delpos from the list.

While we defer a precise definition of position until later, we may still define
operation semantics in terms of post-conditions. On the initiator site, any atom
that is to the left of insertpos, remains to the left of newatom after executing
insert(insertpos,newatom). Similarly for any atom to its right. On the initiator
site, there is an atom at delpos before delete(delpos), and that atom is removed
thereafter.

We wish edit operations to have the same effect at replay sites. If an atom
was to the left of insertpos at the initiator site, then that same atom remains to
the left of newatom at any replay site after it replays insert(insertpos,newatom).
Similarly at the right. The atom that was at delpos at the initiator site is
removed from that position at replay sites after replaying delete(delpos).

It should be clear that our definition of intent preservation is just a special
case of genuine commutativity.

3 Generic shared buffer data type

We consider a shared, replicated document, consisting of a linear sequence of
elements called atoms. An atom may be a character or some other non-editable
element, e.g., a graphics file inserted inside the document [30].

3.1 Unique identifiers for positions

Each atom has an associated unique position identifier (UID), with the following
properties: (i) Each position in the atom buffer has an identifier; no two different
atoms have equal identifiers; an identifier remains constant for the whole lifetime
of the document.3 (ii) There is a total order of position identifiers, noted <. (iii)
Given arbitrary identifiers P and F such that P < F , a fresh (i.e., previously-
unused) unique identifier N such that P < N < F can be generated.

Real numbers have the properties required for UIDs, but property iii would
require infinite precision. In Section 4 we will present a practical alternative,
based on binary trees.

3 However, an unused identifier can be garbage-collected and re-used. We do not attempt
to formalise this property.

6

3.2 Operations

Each user has a replica of the document, and can modify it locally by initiating
one of the following edit operations:

• insert(insertpos,newatom) inserts atom newatom into the abstract docu-
ment state. In the initiator’s state, the position UID insertpos must be
free.

• delete(delpos) removes the atom at position delpos from the document
state. In the initiator’s state, there must be an atom at delpos.

With UIDs with the properties described in Section 3.1, this generic shared
buffer design ensures genuine commutativity as proved in the next subsection,
i.e., the effect of insert and delete is the same at all sites.

Note that we are ignoring semantic issues, and are considering only the syn-
tactic level [15, 29]. At the syntactic level, treedoc edit operations commute
genuinely; however, a particular application might have stronger semantic re-
quirements. For instance, one might demand that all edits pass a spell-checker;
or one might consider it illegal for one user to insert characters inside a piece of
text deleted by another user; or require a proper hierarchy of chapters, sections
and paragraphs; etc. The detection and resolution of such semantic conflicts
have been extensively studied in the literaure [2, 23, 27]. A practical text editor
would manage such semantic conflicts above the treedoc layer. This issue is out
of scope of this paper.

3.3 Abstract atom buffer CRDT

Consider an abstract data type whose state T is a set of (atom, uid) couples,
where uids are unique. The content of state T is the sequence of all atoms in T
ordered by their uid . Operation insert(a, u) adds the pair (a, u) to the set. If
a pair (a, u) exists in the set, operation delete(u) removes the pair, whatever a.
We now prove that concurrent operations of this data type commute.

Lemma 1. Insert operations commute. For any data state T , any fresh unique
identifiers u1 and u2, any atoms a1 and a2, and any originating sites S1 and
S2: 〈T · insert(a1, u1) · insert(a2, u2)〉 ≡ 〈T · insert(a2, u2) · insert(a1, u1)〉.

Proof. After executing the two insert operations, the resulting state includes
the two new atoms. Furthermore, atoms are ordered by unique identifiers.
Therefore, the final state is the same.

Lemma 2. An insert operation commutes with a delete operation when they
refer to different unique identifiers. For any state T , any fresh unique identifier
u1, any unique identifier u2 6= u1, any atom a1, and any originating sites S1

and S2: 〈T · insert(a1, u1) · delete(u2)〉 ≡ 〈T · delete(u2) · insert(a1, u1)〉.

Proof. Two cases must be considered. First, when T includes the atom with
identifier u2. By executing both operations in any order, the final state of T

7

will include an additional atom identified by u1 and it will not include the atom
identified by u2. As atoms are ordered by their unique identifier, the final state
is the same. Second, when T does not include the atom with identifier u2.
By executing both operations in any order, the final state of T will include an
additional atom identified by u1, but not the atom identified by u2, as it was
not in the original state. As atoms are ordered by their unique identifier, the
final state is the same.

Lemma 3. If an insert operation and a delete operation refer to the same
unique identifier, then the insert happens-before the delete.

Proof. According to the specification of Section 3, a user may initiate operation
delete(u) at site S only if a pair (u, a) exists (for some a) in the current state
at site S. This pair must have been inserted by an insert operation executed
previously at site S.

Lemma 4. Delete operations commute. For any state T , any unique identifiers
u1 and u2 and any originating sites: 〈T ·delete(u1)·delete(u2)〉 ≡ 〈T ·delete(u2)·
delete(u1)〉.

Proof. For any original state T , the final state will not include the atoms iden-
tified by u1 and u2, but it will include all other atoms, as no other atom will
ever has the same unique identifier. Thus, the final state will include the same
set of atoms and, as atoms are ordered by their unique identifier, the final state
is exactly the same.

Theorem 1. The data type described in this section is a CRDT.

Proof. By the above lemmas, all concurrent operation pairs (insert-insert, delete-
delete, insert-delete) commute.

4 Single-user treedoc

Let us now turn to practical implementation of the above abstraction. We
start with a simple design that does not support concurrent insertions. In later
sections we will extend our algorithms to overcome this limitation.

4.1 Paths

We manage the document as a binary tree. The left child of a node is noted 0,
its right child is noted 1. A node contains either a single atom, or nil.

The identifier of an atom is its path in the tree, a bitstring. The path to the
root is the empty bitstring ε; the path concatenation operator is noted �. We
note [b1 . . . bn] for b1 � . . . � bn when there is no ambiguity (we always omit ε
when representing paths).

For example, Figure 2 represents the document state "abcdef", with the
following identifiers: id(a) = [00]; id(b) = [0]; id(c) = []; id(d) = [10]; id(e) =
[1]; id(f) = [11].

8

0

0
0

1

1

c

a

b

d

e

f

Figure 2: Identifiers in a shared text buffer, single-user version

0

0
0

1

1

c

a

b

d

e

f

1

Z

0

Y

Figure 3: Identifiers after inserting two new character atoms

We define the following total order over identifiers, which results from walk-
ing the tree in infix order. Node id1 is to the left of id2 (or, equivalently, id2 is
to the right of id1), noted id1 < id2, iff:

• id1 = [c1...cn] is a prefix of id2 = [c1...cnj1...jm] and j1 = 1, or

• id2 = [c1...cn] is a prefix of id1 = [c1...cni1...im] and i1 = 0, or

• id1 = [c1...cni1...in] has a common prefix with id2 = [c1...cnj1...jm] and
i1 = 0. The prefix may be empty.

We also define the ancestry of a node. Node u is the (direct) parent of node
v, noted u/v, iff id(v) = id(u)�0∨id(v) = id(u)�1; equivalently, v is a (direct)
child of u. Node u is an ancestor of v (or, equivalently, v is a descendant of u),
noted u/+v, if u is a parent, or grand-parent, or great-grand-parent, etc., of v.

4.2 Deleting

In this simple design, deleting an atom simply replaces its node’s content with
nil. Since the identification of the deleted node is unique, it is clear that the

9

initiator and replay executions will all delete the same node.
Later, we will discuss discarding (i.e., garbage collecting) deleted nodes.

Sometimes, during replay, the node to be deleted may not exist, but this can
only be because it was already deleted and discarded previously.

4.3 Insertion identifiers

To insert newatom between atoms P and F , we add a node to the tree. The
new node has a fresh identifier, which must satisfy the relation uidP = id(P) <
id(newatom) < uidF = id(F).

Algorithm 1 New unique identifier for insert: single-user tree
1: function newUID (uidp, uidf)
2: Require: uidp < uidf

3: if ∃ a node with UID uidm such that uidp < uidm < uidf then return
newUID(uidp, uidm)

4: else if uidp/
+uidf then return uidf � 0

5: else if uidf/+uidp then return uidp � 1
6: else return uidp � 1

Calling newUID(uidP , uidF) generates fresh a new UID for inserting be-
tween P and F . Algorithm 1 recursively searches for two consecutive nodes p
and f such that uidP ≤ uidp < uidf ≤ uidF . Then it allocates a fresh identifier,
either uidf � 0 or uidp � 1 (heuristically).

In the example of Figure 2, to insert atom Y between c and d, a left child
[100] is created under d. Thereafter, inserting Z between Y and d creates a right
child [1001] under Y. This is illustrated in Figure 3.

5 Multi-user treedoc

A binary tree is insufficient if two users can concurrently insert an atom at
the same position. To address this issue, we maintain the basic binary tree
structure, but extend a node to contain any number of internal mini-nodes. A
node containing mini-nodes will be called a major node, or just node when there
is no ambiguity.

Inside a major node, mini-nodes are identified by a disambiguator. Disam-
biguators are assumed unique within their major node and ordered.

The content of a major node results from an infix-order walk: the content
of the major node’s left child, concatenated to the mini-node contents, concate-
nated to the contents of the major node’s right child.

Figure 4 shows a major node containing several mini-nodes, each with left
and right child. Figures 5 and 6 present the examples illustrated previously,
with the new structure.

We extend paths (UIDs) to include a disambiguator when necessary, i.e.,
(i) at the last element of the path; (ii) whenever the path follows a child of

10

0

...

IdY

Y

IdX

X

0 1

1

0 1

Figure 4: Major node

dA

a

dB

b

dC

c

dF

f

0 1

dE

e

dD

d

1
0

0

 Figure 5: Identifiers in a shared text buffer: multi-user version of Figure 2

a mini-node explicitly. A path element without a disambiguator refers to the
children of the corresponding major node. For example, in Figure 6, the path
of atom Z is [100(1 : idZ)].

We extend the total order on paths by following an infix-order walk of the
tree including mini-nodes and their descendence. Thus id1 < id2, iff:

• id1 = c1 � . . . � cn is a prefix of id2 = c1 � . . . � cn � j1 � . . . � jm and
j1 = 1 ∨ j1 = (1 : d),∀d, or

• id2 = c1 � . . . � cn is a prefix of id1 = c1 � . . . � cn � i1 � . . . � im and
i1 = 0 ∨ i1 = (0 : d),∀d, or

• id1 = c1 � . . . � cn � i1 � . . . � in has a common prefix with id2 =
c1 � . . . � cn � j1 � . . . � jm and i1 < j1.
Given i1 = pi ∈ {0, 1} and j1 = pj ∈ {0, 1}, we say that i1 < j1, iff:
pi < pj .
Given i1 = (pi : di) and j1 = (pj : dj), we say that i1 < j1, iff: pi <
pj ∨ (pi = pj ∧ di < dj).
Given i1 = pi ∈ {0, 1} and j1 = (pj : dj), we say that i1 < j1, iff:
pi < pj ∨ (pi = pj ∧ (∃i2 : i2 = 0 ∨ i2 = (0 : di2),∀di2)).
Given i1 = (pi : di) and j1 = pj ∈ {0, 1}, we say that i1 < j1, iff:
pi < pj ∨ (pi = pj ∧ (∃j2 : j2 = 1 ∨ j2 = (1 : dj2),∀dj2))).

Mini-node u is a mini-sibling of v, noted MiniSibling(u, v), if they are mini-
nodes of the same major node.

11

dA

a

dB

b

dC

c

dF

f

0 1

dE

e

dD

d

1
0

0

dY

Y

0

dZ

Z

1

Figure 6: Identifiers after inserting two new character atoms

5.1 Generating fresh UIDs for insert: concurrent case

We extend newUID with mini-nodes and disambiguators. When inserting be-
tween mini-siblings, Algorithm 2 creates a child of one of the mini-siblings;
otherwise it creates a child of major node. This approach keeps paths short.

Algorithm 2 New unique identifier for insert: concurrent version
1: function newUID (uidp, uidf)
2: // d: new disambiguator.
3: Require: uidp < uidf

4: if ∃ a mini-node with UID uidm such that uidp < uidm < uidf then
return newUID(uidp, uidm)

5: else if uidp/
+uidf then Let uidf = c1 � . . . � (pn : un); return c1 �

. . .� pn � (0 : d)
6: else if uidf/+uidp then Let uidp = c1 � . . . � (pn : un); return c1 �

. . .� pn � (1 : d)
7: else if MiniSibling(uidp, uidf) then return uidp � (1 : d)
8: else Let uidp = c1 � . . .� (pn : un); return c1 � . . .� pn � (1 : d)

Let us consider again the example of Figures 2 and 3. Assume one user
inserts Y between c and d and then Z between Y and d, while another user
concurrently inserts W between c and d. The final state is presented in Figure 7
(assuming dW < dY). If, subsequently, some user wants to insert X between W
and Y, this creates a child under mini-node W, as illustrated in Figure 8, where
id(X) =[10(0 : dW)(1 : dX)], .

This algorithm is just a straightforward approach for generating fresh UIDs.

12

dA

a

dB

b

dC

c

dF

f

0 1

dE

e

dD

d

1
0

0

dY

Y

0

dW

W

dZ

Z

1

 Figure 7: Identifiers after concurrent inserts

Note that, for any uidp and uidf , there is an infinite number of fresh UIDs,
uidm such that uidp < uidm < uidf .

5.2 Site identifiers for disambiguators

Several alternatives are possible for disambiguators. Here we suggest using site
identifiers, which are compact and easy to manage. For instance, MAC addresses
are guaranteed unique, however they occupy 6 bytes. Shorter identifiers might
be used instead for an object shared among a small number of sites.

5.3 Alternative supporting immediate discard

A possible alternative is a pair (siteID , counter) for disambiguators, where
counter is a per-site counter used to ensure global uniqueness. Such disambigua-
tors are ordered as follows: (s1, c1) < (s2, c2), iff: c1 < c2 ∨ (c1 = c2 ∧ s1 < s2).

With this approach, a mini-node that is deleted may be discarded (i.e.,
garbage collected) immediately, as proved in section 3.

When implementing treedoc as a tree, a mini-node can be discarded if it
has no descendence. A major node with no mini-nodes can also be discarded.
Conversely, the replay version of insert may find that ancestors of the new node
have been discarded concurrently, and must re-create empty nodes to replace
them.

13

dA

a

dB

b

dC

c

dF

f

0 1

dE

e

dD

d

1
0

0

dY

Y

0

dW

W

dX

X

1

dZ

Z

1

Figure 8: Identifiers after inserting atom between mini-siblings

6 Clean-up operations

The approach so far has some limitations. Paths are variable length and can
become inefficient if the tree is unbalanced (e.g., if users always append to the
end of the buffer). The tree metadata consumes memory and mini-nodes add
complexity and overhead.

These issues can be mitigated somewhat. For instance, disambiguators could
be removed once it is clear they are not necessary, i.e., that there is a single mini-
node (nota that sibling mini-node only occur as a consequence of concurrent
inserts). Deleted nodes can be garbage-collected. Imbalance can be avoided
somewhat by using better heuristics when generating new unique identifier.

Rather than address these issues individually, this section proposes a more
radical solution: structural clean-up operations that switch between the efficient,
but unflexible, sequential buffer representation, and the more expensive edit-
oriented tree representation. The specification of these operations is as follows.

• explode(atomstring). Returns a treedoc whose contents is identical to
atomstring .

• flatten(path) Returns an atom string whose contents is identical to the
sub-treedoc rooted at path.

The initiator and replay versions of these operations must have identical
effect. In particular, explode must return exactly the same structure at all sites.

Observing that the capacity of a complete binary tree with depth levels is
2depth − 1, we suggest for explode the simple implementation of Algorithm 3.
It is important to note that after executing an explode, the path of an atom is

14

a simple bitstring (as we can use ε for the disambiguators, with ε < d, for all
d 6= ε disambiguators).

Algorithm 3 explode and flatten
1: procedure explode (atomstring) // atomstring : sequence of atoms
2: depth = dlog2(length(atomstring) + 1)e
3: T = Allocate a complete binary tree of depth depth
4: Populate T in infix order with the atoms of atomstring
5: Remove any remaining nodes
6: Return T

7: procedure flatten (N) // N : root of a subtree to be flattened
8: Walk subtree in UID order
9: Return a linear buffer containing the atoms of the non-empty nodes

With these clean-up operations, it becomes possible at any point in time to
choose the most appropriate representation. For instance, when a tree becomes
unbalanced, it suffices to flatten then explode it to fix the problem.

However, these internal clean-up operations do not genuinely commute with
edit operations. We address this issue next.

6.1 Commuting clean-up with edits

A first observation is that the explode operation is not really necessary. Algo-
rithm 3 can be interpreted as a mapping from a string to a canonical treedoc
representation. Applying a path to a string implicitly converts the string to the
canonical treedoc. Eliminating the explicit explode operation removes the need
to make it commute with edits.

A second observation is that flatten is not an essential operation. When
flatten is concurrent with an edit operation in the same subtree, then the edit
should have higher precedence. More precisely, a conflicting edit causes a flatten
to abort, leaving no side-effects (and causing no harm).

Therefore flatten executes a distributed commitment procedure. When exe-
cuting flatten at some site, if this site observes the execution of a insert , delete
or flatten within the sub-tree to be flattened, that site votes “No” to commit-
ment, otherwise it votes “Yes.” The operation succeeds only if all sites vote
“Yes,” otherwise it has no effect. Any distributed commitment protocol from
the literature will do, for instance two-phase commit, three-phase commit, or
Gray and Lamport’s fault-tolerant protocol [9].

We may now envisage a mixed tree, where parts that are currently being
edited are in treedoc representation, and parts that are currently quiescent are
represented as strings.

15

6.2 Fault tolerance and disconnected operation

Ensuring fault tolerance and disconnected operation for disconnected edits is
straightforward. Every site logs all its operations (whether locally initiated or
remote) on persistent storage. When a site that was disconnected for some time
reconnects with the rest of the system, it simply exchanges with other sites the
missing information. If a site fails and recovers the situation is the same. If a
site crashes, losing its memory, then when it restarts it behaves like a new site,
and copies over the state of some other site; operations that it initiated before
the crash and never sent to another site are lost.

The situation is more complex for flattens, since they require a consensus.
To ensure that consensus is solvable in the presence of crashes, we assume the
existence of fault detectors [4].

To allow disconnected operation, fault detectors must be capable of distin-
guishing disconnection from a crash. During the commit phase of flatten, a
disconnected site is assumed to be voting No, and flatten aborts. This is dis-
tinct from a crashed site, which is excluded from the commitment by the fault
detector.

Note that if a disconnected site is falsely diagnosed as crashed, any operations
that it initiated within a sub-tree that was flattened cannot be replayed, because
they use now-forgotten node identities. Such operations are lost. Similarly,
if this site initiated operations that depend on a node that was deleted and
garbage-collected, then these operations are lost.

6.3 Generality of the approach

Clean-up operations and its execution relying on background consensus are used
only for improving the efficiency of our solution, by reducing the size of metadata
maintained by the treedoc. As such, an interesting question that arises is of
its applicability to other concurrency control solutions previously proposed in
literature.

When executing a flatten operation relying on a background consensus pro-
tocol, the system is guaranteeing that all replicas have received and executed
the same set of operations (for a given subtree). Thus, for those operations,
no concurrent operations may arise. As such, our approach could also be used
in WOOT [20] for discarding the meta-data of characters inserted by such op-
erations and for discarding the deleted characters, as this information is only
necessary for handling concurrent updates.

7 Related work

A comparison of several approaches to the problem of collaboratively editing a
shared text was written by Ignat et al. [10].

Operational transformation (OT) [6, 29, 28, 15, 14] considers collaborative
editing based on non-commutative single-character operations. To this end,
OT transforms the arguments of remote operations to take into account the

16

effects of concurrent executions. OT requires two correctness conditions [24]:
the transformation should enable concurrent operations to execute in either
order, and furthermore, transformation functions themselves must commute.
The former is relatively easy. The latter is more complex, and Oster et al. [19]
prove that all previously proposed transformations violate it. After this, several
OT solutions have been proposed [18, 31, 16]. However, the new solutions are
also complex and it remains hard to verify their correctness.

OT attempts to make non-commuting operations commute after the fact.
We believe that a better approach is to design operations to commute in the
first place. This is more elegant, and avoids the complexities of OT.

A number of papers study the advantages of commutativity for concurrency
and consistency control [2, 32, for instance]. Systems such as Psync [17], Gener-
alized Paxos [13], Generic Broadcast [22] and IceCube [23] make use of commu-
tativity information to relax consistency or scheduling requirements. However,
these works do not address the issue of achieving commutativity.

Weihl [32] distinguishes between forward and backward commutativity. They
differ only when operations fail their pre-condition. In this work, we consider
only operations that succeed at the submission site, and ensure by design that
they won’t fail at replay sites.

Roh et al. [25] were the first to suggest the CRDT approach. They give
the example of an array with a slot assignment operation. To make concurrent
assignments commute, they propose a deterministic procedure (based on vector
clocks) whereby one takes precedence over the other.

This is similar to the well-known Last-Writer Wins algorithm, used in shared
file systems. Each file replica is timestamped with the time it was last written.
Timestamps are consistent with happens-before [11]. When comparing two ver-
sions of the file, the one with the highest timestamp takes precedence. This is
correct with respect to successive writes related by happens-before, and consti-
tutes a simple precedence rule for concurrent writes.

In the precedence design of Roh et al., concurrent writes to the same location
are lost. This is inherent to the destructive assignment operation that they
consider. In ours, concurrent inserts commute genuinely, which is important in
order to support co-operative work.

Oster et al. recently proposed a replicated character buffer CRDT called
WOOT that supports only insert and delete operations [20]. Each character has
a unique identifier, and maintains the identifiers of the previous and following
characters at the initial execution time; this is a lot of overhead, as discussed
earlier in this paper. The WOOT data structure grows indefinitely, because
there is no garbage collection or restructuring. WOOT does not support block
operations.

In Lamport’s replicated state machine approach [11], every replica executes
the same operations in the same order. This total order is computed either by
a consensus algorithm such as Paxos [12] or, equivalently, by using an atomic
broadcast mechanism [5]. Such algorithms can tolerate faults, however they are
complex and scale poorly. As consensus occurs within the critical execution
path, it adds latency to every operation.

17

The precedence approach can be viewed as a poor-man’s total order. It does
not require an online consensus algorithm, but it loses work.

In the treedoc design, common edit operations execute optimistically, with
no latency; it uses consensus in the background only. Previously, Golding relied
on background consensus for garbage collection [7]. We are not aware of previ-
ous instances of background consensus for clean-up operations, nor of aborting
consensus when it conflicts with essential operations.

8 Performance comparison

We compare the overheads of treedoc with a flat buffer and with WOOT [20].
The common case is that an atom represents a single character; in the following
we assume sizeof(atom) = 8 bits. Our results are summarised in Table 1.

8.1 Time complexity

The time complexity for executing an insert or remove operation in a linear
buffer representation is constant O(1). WOOT requires O(n) for a linear search
of the unique identifers. In treedoc, it is O(log n) for a balanced tree. In both
cases, auxiliary indexing structures (e.g., hashing) could be used to improve
performance at the cost of greater space.

8.2 Memory

The linear buffer structure is an array, which can remain approximately of size
m, where m is the current number of non-deleted atoms. (generally m < n). In
bits, the size is m× sizeof(atom) = 8m.

The WOOT data structure is a list of nodes, where each node stores an atom,
the atom’s identifier, and its predecessor and successor at the initiator. WOOT
never discards deleted atoms. Atom identifiers (noted WOOTID hereafter)
must be globally unique within the document for its whole lifetime; assume
they are composed of a site identifier and a counter. Thus, we evaluate the
storage size to N × (sizeof(atom) + 3 × sizeof(WOOTID) + 1) (counting one
bit to mark an atom as deleted), where N is the aggregated number of atoms
ever inserted in the document. Assuming a pointer is 4 bytes, and a WOOT
identifier is 10 bytes (6 bytes of MAC address and an integer counter), this
comes to N × (8 + 3× 80 + 1) = 249N bits.

Using standard tree algorithms, the storage size of treedoc is n×(sizeof(atom)+
2× sizeof(pointer) +
sizeof(disambiguator)+ 2), counting a deleted bit and a bit to distinguish mini-
nodes. Here, n is the number of atoms currently in the structure; it is likely
that n � N . In our first alternative, a disambiguator is a short integer. The
second one (omitted from Table 1 requires a unique site identifier and a counter;
however n is smaller in this case. In the former case, assuming 2-bytes disam-
biguators, the storage size comes to n × (8 + 2 × 32 + 16 + 2) = 90n bits. In

18

the latter, assuming the same size as a WOOTID , the storage size comes to
n× (8+2×32+80+2) = 154n bits. (A tree can also be stored more compactly,
e.g. as a parenthesised list, avoiding the cost of pointers, at the expense of
performance.)

The flatten operation, presented in Section 6, results in zero storage over-
head. The flattened storage size is exactly the same as the flat buffer.

In summary, the memory consumption of non-flattened treedoc is less than
half or a third of WOOT, and flattened treedoc consumes even less memory.
It is important to notice that this comparison does not consider the impact
of discarding deleted atoms. Considering this possibility of our approach, the
comparison would be even more favorable to our approach.

8.3 Message size

To transmit the insert operation, WOOT sends the new atom, and the identifiers
of the new atom, of its predecessor and of its successor; the transmission size is
sizeof(atom) + 3× sizeof(WOOTID) = 248 bits.

In contrast, treedoc transmits the atom and its path (UID). Assuming a
balanced tree, and the common case of a path containing a disambiguator only
at the end, the size of a path is at most log2 n + sizeof(disambiguator), where
n is the current size of the document. Thus the transmission size is less or
equal sizeof(atom) + log n + sizeof(disambiguator). For a one-megabyte text
and 2-byte disambiguators, this comes to 8 + 20 + 16 = 44 bits. For 10-byte
disambiguators, this comes to 8 + 20 + 80 = 108 bits.

To transmit the remove operation, WOOT sends the identifiers of the atom
to be deleted; the transmission size is sizeof(WOOTID) = 80 bits.

Treedoc also transmits the atom identifiers (UID). Assuming a balanced tree,
and the common case of a path containing a disambiguator only at the end, the
size of a path is at most log2 n + sizeof(disambiguator), where n is the current
size of the document. For a one-megabyte text and 2-byte disambiguators,
this comes to 20 + 16 = 36 bits. For 10-byte disambiguators, this comes to
20 + 80 = 100 bits.

In summary, for a large document, the message size of treedoc is between
5.6 and 2.3 times less than WOOT for inserts, and between 2.2 times less and
1.25 times more for deletes.

9 Conclusion

It was known previously that commutativity simplifies consistency maintenance,
but the issue of designing systems for commutativity was neglected. This paper
suggested a new paradigm for replication: the Commutative Replicated Data
Type or CRDT, designed such that concurrent operations commute. Replicas
of any CRDT converge if operations are executed respecting causality. This
makes the implementation of replicated systems much simpler than alternative
techniques.

19

flat WOOT treedoc
tree flat

Time O(1) O(m) O(log m)
Space m 31.125N 11.25n m

(Ratio) 1 311 22 1
Message (add) 5 31 ≤ 5.5 N/A

Table 1: Comparison. Sizes in bytes. m = current number of characters; n
= current number of characters, including deleted characters; N = cumulated
number of characters; m ≤ n � N . Ratio computed for m = 106, n = 2 × m,
N = 10×m.

However, designing a non-trivial genuine CRDT (i.e., that preserves user
intents) is not trivial. We give a genuine CRDT solution to the problem of
a shared edit buffer, by implementing some known techniques in a novel and
efficient way (invariant identifiers represented as paths in a binary tree) and by
some new techniques (abortable consensus in the background). Our solution
also guarantees intention preservation.

We also propose a novel technique, background consensus, to clean up redun-
dant metadata without interfering with ordinary edit operations. This mecha-
nism is generic and it could be used to improve other editor algorithms.

References
[1] Authors and title omitted for anonymity. Technical report.

[2] B. R. Badrinath and K. Ramamritham. Semantics-based concurrency control:
beyond commutativity. ACM Trans. Database Syst., 17(1):163–199, Mar. 1992.

[3] P. Cederqvist et al. Version Management with CVS. Network Theory Ltd., 2006.

[4] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for
solving consensus. J. ACM, 43(4):685–722, 1996.

[5] X. Défago, A. Schiper, and P. Urbán. Total order broadcast and multicast algo-
rithms: Taxonomy and survey. ACM Comput. Surv., 36(4):372–421, Dec. 2004.

[6] C. A. Ellis and S. J. Gibbs. Concurrency control in groupware systems. In Int.
Conf. on Management of Data (SIGMOD), pages 399–407, Portland, OR, USA,
1989. ACM SIGMOD, ACM. Invention of Operational Transformation.

[7] R. A. Golding. Weak-consistency group communication and membership. PhD
thesis, University of California Santa Cruz, Santa Cruz, CA, USA, Dec. 1992.
Tech. Report no. UCSC-CRL-92-52.

[8] Google. Google docs. http://documents.google.com/.

[9] J. Gray and L. Lamport. Consensus on transaction commit. ACM Trans. Database
Syst., 31(1):133–160, Mar. 2006.

[10] C.-L. Ignat, G. Oster, P. Molli, M. Cart, J. Ferrié, A.-M. Kermarrec, P. Sutra,
M. Shapiro, L. Benmouffok, J.-M. Busca, and R. Guerraoui. A comparison of
optimistic approaches to collaborative editing of Wiki pages. In Int. Conf. on Coll.
Computing: Networking, Apps. and Worksharing (CollaborateCom), number 3,
White Plains, NY, USA, Nov. 2007.

20

[11] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, July 1978.

[12] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–
169, May 1998.

[13] L. Lamport. Generalized consensus and Paxos. Technical Report MSR-TR-2005-
33, Microsoft Research, Mar. 2005.

[14] D. Li and R. Li. Ensuring content and intention consistency in real-time group ed-
itors. In Int. Conf. on Distributed Comp. Sys. (ICDCS), pages 748–755, Hachioji,
Tokyo, Japan, Mar. 2004. IEEE Computer Society.

[15] D. Li and R. Li. Preserving operation effects relation in group editors. In Int.
Conf. on Computer-Supported Cooperative Work (CSCW), pages 457–466, New
York, NY, USA, 2004. ACM.

[16] R. Li and D. Li. A new operational transformation framework for real-time group
editors. IEEE Trans. Parallel Distrib. Syst., 18(3):307–319, 2007.

[17] S. Mishra, L. Peterson, and R. Schlichting. Implementing fault-tolerant replicated
objects using Psync. In Symp. on Reliable Dist. Sys., pages 42–52, Seattle, WA,
USA, Oct. 1989. IEEE.

[18] G. Oster, P. Molli, P. Urso, and A. Imine. Tombstone transformation functions for
ensuring consistency in collaborative editing systems. In Int. Conf. on Coll. Com-
puting: Networking, Apps. and Worksharing (CollaborateCom), page 10, Atlanta,
Georgia, USA, Nov. 2006. IEEE Computer Society.

[19] G. Oster, P. Urso, P. Molli, and A. Imine. Proving correctness of transformation
functions in collaborative editing systems. Rapport de recherche RR-5795, LORIA
– INRIA Lorraine, Dec. 2005.

[20] G. Oster, P. Urso, P. Molli, and A. Imine. Data consistency for P2P collaborative
editing. In Int. Conf. on Computer-Supported Cooperative Work (CSCW), pages
259–268, Banff, Alberta, Canada, Nov. 2006. ACM Press.

[21] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker, E. Walton,
J. M. Chow, D. Edwards, S. Kiser, and C. Kline. Detection of mutual inconsistency
in distributed systems. IEEE Trans. Softw. Eng., 9(3):240–247, 1983.

[22] F. Pedone and A. Schiper. Handling message semantics with generic broadcast
protocols. Distributed Computing Journal, 15(2):97–107, 2002.

[23] N. Preguiça, M. Shapiro, and C. Matheson. Semantics-based reconciliation for
collaborative and mobile environments. In Int. Conf. on Coop. Info. Sys. (CoopIS),
volume 2888 of Lecture Notes in Comp. Sc., pages 38–55, Catania, Sicily, Italy,
Nov. 2003. Springer-Verlag.

[24] M. Ressel, D. Nitsche-Ruhland, and R. Gunzenhäuser. An integrating,
transformation-oriented approach to concurrency control and undo in group ed-
itors. In Int. Conf. on Computer-Supported Cooperative Work (CSCW), pages
288–297, Boston, MA, USA, May 1996. ACM. Correctness conditions TP1 and
TP2 for OT.

[25] H.-G. Roh, J.-S. Kim, and J. Lee. How to design optimistic operations for peer-
to-peer replication. In Int. Conf. on Computer Sc. and Informatics (JCIS/CSI),
Kaohsiung, Taiwan, Oct. 2006.

[26] Y. Saito and M. Shapiro. Optimistic replication. Computing Surveys, 37(1):42–81,
Mar. 2005.

[27] M. Shapiro, K. Bhargavan, and N. Krishna. A constraint-based formalism for
consistency in replicated systems. In Proc. 8th Int. Conf. on Principles of Dist.

21

Sys. (OPODIS), number 3544 in Lecture Notes in Comp. Sc., pages 331–345,
Grenoble, France, Dec. 2004.

[28] C. Sun and C. Ellis. Operational transformation in real-time group editors: issues,
algorithms, and achievements. In Int. Conf. on Computer-Supported Cooperative
Work (CSCW), page 59, Seattle WA, USA, Nov. 1998.

[29] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving convergence, causality
preservation, and intention preservation in real-time cooperative editing systems.
Trans. on Comp.-Human Interaction, 5(1):63–108, Mar. 1998.

[30] C. Sun, S. Xia, D. Sun, D. Chen, H. Shen, and W. Cai. Transparent adaptation of
single-user applications for multi-user real-time collaboration. ACM Transactions
on Computer-Human Interaction (TOCHI), 13(4):531–582, dec 2006. CoWord
and CoPowerpoint.

[31] D. Sun and C. Sun. Operation context and context-based operational transfor-
mation. In CSCW ’06: Proceedings of the 2006 20th anniversary conference on
Computer supported cooperative work, pages 279–288, New York, NY, USA, 2006.
ACM.

[32] W. E. Weihl. Commutativity-based concurrency control for abstract data types.
IEEE Trans. Comput., 37(12):1488–1505, Dec. 1988.

[33] S. Xia, D. Sun, C. Sun, D. Chen, and H. Shen. Leveraging single-user applications
for multi-user collaboration: the coword approach. In Int. Conf. on Computer-
Supported Cooperative Work (CSCW), pages 162–171, New York, NY, USA, 2004.
ACM.

22

	Introduction
	System model
	Replicated execution and eventual consistency
	Genuine commutativity vs. precedence
	Intention preservation

	Generic shared buffer data type
	Unique identifiers for positions
	Operations
	Abstract atom buffer CRDT

	Single-user treedoc
	Paths
	Deleting
	Insertion identifiers

	Multi-user treedoc
	Generating fresh UIDs for insert: concurrent case
	Site identifiers for disambiguators
	Alternative supporting immediate discard

	Clean-up operations
	Commuting clean-up with edits
	Fault tolerance and disconnected operation
	Generality of the approach

	Related work
	Performance comparison
	Time complexity
	Memory
	Message size

	Conclusion

