
Decentralized Processing Strategies for
Participatory Sensing Data

Heitor Ferreira, Sérgio Duarte and Nuno Preguiça

CITI / DI-FCT-UNL
Quinta da Torre, 2829-516 Caparica, Portugal

Abstract. Participatory Sensing is a new computing paradigm that
aims to turn personal mobile devices into advanced mobile sensing net-
works. In this paper, we describe and evaluate two distributed strategies
for processing participatory sensing data. These strategies are built on
top of a decentralized architecture composed on user-contributed ma-
chines. The evaluation shows that these strategies spread the load among
system nodes, thus providing a scalable solution for supporting partici-
patory sensing applications that requires no central node.

Key words: participatory sensing, distributed processing, mobile com-
puting

1 Introduction

Participatory Sensing [1, 4] is an emergent pervasive computing discipline that
aims to leverage the growing ubiquity of sensor capable mobile phones as the
basis for performing wide-area sensing tasks. Taking advantage of people’s move-
ments in their daily routines, Participatory Sensing promises an enormous po-
tential for gathering valuable data at a fraction of the cost associated with the
deployment of dedicated sensor infrastructures. Examples of this potential are
well illustrated in [7, 12, 15], which concern road conservation and traffic moni-
toring, based on accelerometer and GPS readings collected by mobile devices.

Realizing the potential of Participatory Sensing applications poses several
challenges, in particular, that of large-scale support, since the appeal of the
paradigm could make its applications popular, but also because high data re-
dundancy may be required to address accuracy concerns. Many of the application
examples found in the literature [7, 12, 15] use centralized architectures. These
are appropriate for small-scale, proof-of-concept experiments, or if the backing
of a large institution can be secured. Decentralized processing, however, offers an
economically viable alternative to build a community sensing platform supported
mainly by its users. At the same time, it can also address privacy concerns by
foregoing the control of user data to a single entity.

In this paper, we present two distribution strategies for fully decentralized
processing of participatory data. We describe them as an integral part of the
4Sensing platform - a cooperative system for supporting participatory sensing
applications, and evaluate both in a simulator environment. A case study traffic
monitoring application is used to to compare and discuss their expected perfor-
mance in a large-scale setting.

2

Routing Overlay

Mobile Node

Fixed Node

App 1 Ctx

App 1
Client

App 2 Ctx

Core Services

App 2
Client

Core Services

App 1 Ctx App 2 Ctx

Fig. 1: 4Sensing architecture

Mobile node (congested)

Fixed node

Mobile node (normal)

Fig. 2: Snapshot of the traffic simulation
application

The rest of the paper is structured as follows. Section 2 provides an overview
of the 4Sensing system. Section 3 details the two distribution strategies proposed
in this paper, followed by the results of their experimental evaluation in Section 4.
The paper concludes with an overview of related work and some conclusions,
respectively, in Sections 5 and 6.

2 System Overview

2.1 System Architecture

The 4Sensing system architecture, depicted in figure 1, comprises two kinds of
nodes. A large number of mobile nodes, equipped with sensors, are the main
source of data for the system, whereas a fixed node infrastructure provides com-
puting and storage resources. Mobile nodes, typically smartphones, are expected
to have limited computational power, battery life and communications capabil-
ities. As such, mobile nodes will mainly support user interaction and run data
acquisition services on behalf of the applications that run mostly on the fixed
infrastructure. The fixed infrastructure can be composed only of personal com-
puters contributed by the users themselves, allowing a self-sufficient system to be
assembled and maintained by its own user community. The fixed infrastructure
can include also virtual machines and servers hosted by independent entities.

Fixed nodes are organized as a two-tier overlay network of loosely-coupled
geographic partitions or clusters. Each fixed node is given a geographic position.
Each geographic partition, individually, forms an one-hop DHT [11], as described
in [5], meaning that every node strives to maintain complete knowledge about
its cluster’s node composition (including their coordinates). These partitions are
organized according to geography and are centered on major points of interest,
such as a large metropolitan area. This arrangement leverages geography to opti-
mize communications latency and throughput, exploiting the strong correlation
expected regarding where sensory data is produced and consumed. Inter-cluster
connectivity is provided by a top-tier. This tier is also organized as an one-hop
DHT and is populated by a few selected nodes (of each partition) with the added
task of maintaining routing information to other clusters.

3

Mobile nodes do not interact directly, and connect to the fixed infrastructure
to upload sensory data and request processed information. A privileged link to
a homebase fixed node is used to facilitate this and serve as a personal gateway.
The fixed homebase is useful in that it minimizes the routing logic and network
involvement on the mobile side. For instance, the homebase node can be used to
automatically refresh data request leases on behalf of its mobile node.

2.2 Data Model

Applications access participatory sensing data by issuing queries over virtual
tables - the main high-level data abstraction provided by 4Sensing for naming a
collection of data with a particular schema and semantics. Virtual tables have
a global scope within a particular instance of the 4Sensing platform. Issuing a
query over a virtual table serves two purposes, it allows applications to request
data and, at the same time, restrict its scope to a subset of the whole, in the
form of spatial and temporal constraints.

While flexible regarding the actual schema, virtual tables handle geo-referenced
and time-stamped data. As such, virtual table data is represented as a set of
named attributes and, as a common denominator, each data tuple must include
a temporal attribute, i.e., a timestamp, and a spatial component, in the form of
physical coordinates or a geographic extent. A query over a virtual table will then
result in a sequence of data tuples to be forwarded to the requesting application,
confined to the requested geographic area and time period.

Virtual tables are purely logical entities, in the sense they do not necessarily
need to refer to data already present in some physical storage medium. Inter-
facing applications with persisted (stored) data is just one of the facets of this
construct. Virtual tables can also target data that does not yet exist and that
may never be stored, including data intended to be produced and consumed
with (near) realtime requirements. Moreover, another central concept to virtual
tables is that they refer to data produced as a result of applying a set of trans-
formations to raw sensor inputs and other virtual tables. As such, virtual tables
embody a generic inference mechanism that creates high-order data from simpler
constituents. This design is intended to facilitate and promote data sharing and
cooperation among otherwise unrelated applications.

Data transformation Data transformation is achieved by specifying the exe-
cution of a pipeline of successive operations. Starting with raw sensor samples,
or data from other virtual tables, a derived class of data can be produced, based
on the output of a combination of pipeline operators. Data transformations typi-
cally involve mapping, aggregation and condition detection operations. Mapping
adds new attributes to individual data elements, such as tagging a GPS reading
with a street segment identifier. Aggregation combines several samples into one
and often involves statistical operators, such as count, average, etc., over tem-
poral data snapshots. Finally, condition detection generates new data indicative
of a particular noteworthy event, such as a congested street. Due to space limi-
tations, we only illustrate them with an example, the same used as the basis for
the experimental evaluation discussed in Section 4.

4

Definition 1 TrafficHotspots virtual table specification
sensorInput(GPSReading)
dataSource {

process{ GPSReading r ->
r.derive(MappedSpeed, [boundingBox: model.getSegmentExtent(r.segmentId)])

}
timeWindow(mode: periodic, size:10, slide:10)
groupBy([’segmentId’]){

aggregate(AggregateSpeed) { MappedSpeed m ->
sum(m, ’speed’, ’sumSpeed’)
count(m, ’count’)

} } }
globalAggregation {

timeWindow(mode: periodic, size:10, slide:10)
groupBy([’segmentId’]){

aggregate(AggregateSpeed) { AggregateSpeed a ->
avg(a, ’sumSpeed’, ’count’, ’avgSpeed’)

} }
classify(AggregateSpeed) { AggregateSpeed a ->

if(a.count > COUNT THRESHOLD && a.avgSpeed <= SPEED THRESHOLD * model.maxSpeed(a.segmentId))
a.derive(Hotspot, [confidence: Math.min(1, a.count/COUNT THRESHOLD*0.5)])

} }

The TrafficHotspots virtual table, c.f. Definition 1, exemplifies the inference
logic for the application devoted to realtime traffic monitoring used in the eval-
uation section - see figure 2 for a screenshot of the simulation. Starting with
discrete GPS readings collected by mobile nodes, it outputs a stream of Hotspot
tuples, representing real-time detections of congested road segments, when cer-
tain thresholds are exceeded. In between, data is progressively transformed into
intermediate forms, such as MappedSpeed and AggregateSpeed representing for
each road segment, respectively, an individual speed measurement and the av-
erage car speed for the last 10 seconds. An in-depth description of virtual tables
and the semantics of these pipeline operators is presented elsewhere [8].

A key aspect about data processing in virtual tables is that it is split between
two separate transformation pipeline stages. One, dataSource, processes data
locally available to the node, i.e., data already stored locally or data that is
being acquired and uploaded by mobile nodes. The globalAggregation merges
the contributions of several nodes. Together, the two pipeline stages abstract
the 4Sensing distributed data processing facet. Consequently, their operation is
very closely tied to the distribution strategy employed, which among other things
determines the shape and properties of the infrastructure aggregation tree used,
as discussed further on.

Data Dissemination When a node issues a query, the system instantiates
data processing pipelines in certain fixed infrastructure nodes, depending on the
geographic coverage of the standing queries. For returning results to the client,
4Sensing adopts a push-based model that leverages a publish/subscribe, content-
based routing substrate. As data becomes available in the distributed processing
pipelines, it is published and routed by the fixed infrastructure to the interested
nodes. When results are to be returned to mobile nodes, they are propagated
via their respective homebase nodes.

An in-depth discussion of this content-based routing substrate is out of scope
of this paper and can be found in [5]. However, the following key character-

5

istics are important to highlight. The substrate spans all fixed infrastructure
nodes. Mobile nodes do not participate directly and interface via their respec-
tive homebase nodes. It leverages the one-hop DHTs to assemble, on-the-fly, a
random dissemination tree for each message separately. The result is trees that
span solely the message’s publisher node and the actual recipient nodes (i.e.,
produces no false positives). Successive messages produce different dissemina-
tion trees, which improves load-balancing. Fault-tolerance measures also ensure
that no false negatives are introduced in the presence of network churn, so that
messages will eventually reach all known recipients at the time of publishing,
with high probability.

3 Distribution Strategies

The abstract model for distributed processing outlined above can be material-
ized by different distribution strategies, which determine how the overall infras-
tructure is organized to support multiple participatory sensing applications. In
particular, each strategy defines the role of the homebase, how data is acquired
by the system, how queries are distributed to relevant nodes, and how data is
aggregated. Different strategies strive for different strengths. We next describe
two strategies that we have implemented in the 4Sensing platform.

3.1 RTree

The main rational behind RTree (Random Tree) is to have the homebase as a
personal data repository and use it for privacy protection mechanisms - such as
the privacy firewall advocated in [9]. Personal stores can be private - an incentive
for users to contribute resources to the system infrastructure - or shared by a
group of users. All data acquired by a mobile node is uploaded to the user’s
homebase, which is expected to cover a potentially large geographic area (e.g.,
a city-wide area) around the user’s home, workplace and in-between.

Query Dissemination and Processing The determining aspect of RTree is
that every homebase potentially hosts data relevant to any particular query.
Targeting every homebase is too inefficient, as a tradeoff, RTree restricts query
distribution by having each homebase define the geographical area it is willing
to serve - its query filter. In general, this area will be restricted to the regions its
owner visits more often, thus guaranteeing that all (or most of) collected data
is shared with the community.

For the purpose of distributed processing, RTree treats overlapping queries
as a single one. Therefore, for each set of overlapping queries, RTree constructs
a random tree spanning all homebases whose query filters intercept the union
of the query areas. The algorithm that assembles these trees is fully distributed
and leverages the same publish/subscribe substrate used to disseminate query
results. When a mobile node issues a new query, its homebase publishes the query
(characterized by a geographic extent). All homebases with intercepting query
filters (and only those) will receive the query and will try to merge it with existing
queries. If a node determines that the new query overlaps the boundary of already
existing queries, the resulting compound (wider) query is published, repeating
the process. Eventually, no more overlaps are produced and the process stops.

6

Since the publish/subscribe substrate already produces a random tree for each
published message, each node only has to record the path each query has taken
to determine its place in the random aggregation tree. When individual queries
are not renewed and expire, it can cause larger compound queries to shrink or
split into disjoint pieces. This is also handled in a distributed fashion. When a
node determines a individual query has expired, it eliminates it and re-merges
the remaining ones. Again, if there is a change in the resulting set, it publishes
the new merged queries, mimicking the initial process. Logical timestamps and
other optimizations are used to limit the number of messages exchanged and
handle concurrent re-publish operations from different nodes. To improve on
load-balancing, merged queries can be re-published periodically, producing a
new tree in the process. RTree generates aggregation trees with a default fanout
degree of 6, but it can instruct the publish/subscribe substrate to use other
values, for instance to control tree depth.

In a given RTree instance, every node (homebase) has the same role and will
instantiate both the data source and global aggregation pipeline stages. Since
a node cannot determine if it has complete information for a particular spatial
extent, data aggregation and processing may have to proceed until the root is
reached. This is particularly problematic for virtual tables whose inference logic
requires detecting the absence of certain data patterns. Early detections can be
published as soon as they are produced in any point of the aggregation tree.
As discussed earlier, data dissemination uses dedicated trees and is delivered
exclusively to nodes with matching (individual) queries.

3.2 QTree

In QTree (Quad Tree), the idea is to do an a priori partition of the data by
performing a regular subdivision of the space into quadrants, while the num-
ber of infrastructure nodes located in each area exceeds a minimum occupancy
threshold. Each infrastructure node belongs simultaneously to all the quadrants
that contain it, down to the smallest - called its maximum division quadrant.
Under this scheme, acquired sensor data is committed and bound to any of the
fixed nodes that lie in the smallest quadrant that fully encloses the data’s co-
ordinates or geographic extent. Therefore, in QTree, dataSource pipeline stages
will process data acquired by any mobile node. In the deepest levels of the QTree
aggregation tree, all the processed data pertains to the immediate neighborhood
of the processing node. This enables QTree nodes to potentially detect highly
localized phenomena more efficiently and sooner in the aggregation tree.

Query Dissemination and Processing QTree and RTree share a large num-
ber of features: overlapping queries are merged and split using the same re-
publish strategy; a random tree containing all relevant infrastructure nodes is
created by disseminating the query using a distributed algorithm; periodically
re-publishing the query can be used to improve load-balancing; data dissemina-
tion uses dedicated trees spanning only nodes with matching queries.

The algorithms differ mainly on the query filter used and how queries are
routed to build the aggregation tree. In QTree, the query filter corresponds

7

to the minimum subdivision quadrant it belongs to1. As for query (content-
based) routing, it is performed by recursively subdividing space along quadrant
boundaries. At each point of the routing tree, the current quadrant is divided
into sub-quadrants, selecting for each of them, a child node, at random, from
those enclosed and whose query filters intercept the query area. Along the way,
the query path is updated and appended to the query as it travels along the
dissemination tree, which will also serve as the data processing aggregation tree.

The role of homebase node in QTree is mainly that of a gateway to the fixed
infrastructure. They do not necessarily store or process the data collected by
their respective mobile nodes, but commit and route it to a suitable infrastruc-
ture node. By binding data to nodes close by, QTree allows for early detection of
some data patterns (e.g., a certain number of samples in a given area has been
reached), which can be published and notified to applications sooner, typically
deep in the aggregation tree.

4 Evaluation

The evaluation of the proposed algorithms has been achieved through the simu-
lation of an application for detecting congestion in city traffic. The application
detects congestions in a given area, based on GPS data sampled by the simu-
lated in-transit vehicles at periodic intervals. For this purpose, one virtual table
is used: TraficHotspots, which supports querying for congestion detections, com-
puted from average speeds, as explained in the previous sections.

In our simulation, we are using the Open Street Map (OSM) [17] vectorial
representation of the road network of Lisbon city. This map data is used to
map geographic coordinates to road segments, to determine the spatial extent
of segments and their associated road type. The model used in the evaluation
divides roads, as needed, into segments with a maximum of 1 km and uses
separate segments for each driving direction. Each road is assigned an expected
(uncongested) driving speed according to its type: highway, primary to tertiary
and residential.

In the experiments, we simulated 5000 fixed nodes and 50000 mobile nodes.
Fixed nodes are distributed randomly across the urban space with a minimum
inter-node distance of 80 meters. Mobile nodes simulate in-transit vehicles, ac-
cording to a traffic model, and report GPS readings every 5 seconds as they follow
the assigned paths. They interact with the respective homebase counterpart di-
rectly, resulting in the delivery of raw GPS data with no latency. Communication
among fixed nodes experiences latency and jitter. A common clock is used to
timestamp readings; any effects of clock desynchronization are not considered.

Traffic is modeled by emulating a fleet of vehicles driving through random
routes. The maximum speed for a given segment is the same value used for
congestion detection and depends on the road type. An average speed, for each
road segment at a given time, is determined by its current car density and used
to generate the random speed individually for each vehicle, according to a normal

1 QTree assumes space is sufficiently populated that it can be subdivided to achieve
a uniform minimum subdivision quadrant.

8

Acquisition 278,969 96.3%
Aggregation 10,614 3.7%

Total 289,583 100%

Table 1: Workload using centralized processing (tuples/minute)

distribution. In the experiments performed, congestion occurs in segments with
a density of at least 50 vehicles. Vehicle paths are determined by choosing a
random start position and sequence of road intersections; a new path is assigned
whenever a vehicle reaches its destination. Figure 2 shows a rendering of the
traffic simulation.

In the following results, we have evaluated the effects of a single query cov-
ering 25% of the overall simulation area in an area with high density of mobile
nodes. Note that having a query over a large area is what happens when multiple
queries over nearby small areas (e.g., several points in the city downtown) are
merged in our algorithms. The set of metrics captured was averaged over 5 runs,
corresponding to different fixed node placements.

Workload Distribution We have started by evaluating how the effort required
to evaluate a query is spread among the fixed nodes in the different distribution
strategies. For comparison, we have also computed the effort that a centralized
solution, with a single central node, would experience.

The workload is measured as the number of data tuples processed at each
fixed node in both acquisition and aggregation steps. Specifically, the acquisition
pertains to the number of GPS sensor readings received and processed by the
acquiring node, while the aggregation refers to the number of inputs handled by
the global aggregation stage and corresponds to the updates received for each
segment aggregated by that node.

Table 1 presents the workload using a centralized approach, while Figure 3
shows the workload distribution using the different distribution strategies, which
for RTree involved aggregation trees with fanout degree of 4 and 8, besides the
default value of 6.

The results show that using a decentralized approach, the most loaded node
only processes a small fraction of the tuples processed in a centralized approach
- 0.8% for QTree and 11.5% for the best RTree configuration. Comparing the
two distribution strategies, QTree balances load very effectively, while in RTree,
irrespective of the configuration, there are some nodes with a much higher load.
The reason for this is that the detection of congestion in QTree is done faster, in
the lower levels of the tree, because tuples of the same area will be aggregated in
some node sooner. In RTree, there is often the need to propagate the information
up to the top of the tree to check if a congestion exists or not, as data for the
same areas may be propagated in any path. This explains why the most loaded
nodes, corresponding to the nodes near the root of the tree, have so much load.

Communication Load We have also measured the communication cost, as
the number of messages exchanged during the execution of a query. The com-
munication load includes one-hop DHT overhead (4.4 messages/min per node)

9

5 10 15 20 25
0

10000

20000

30000

40000

50000

60000
RTree 4
RTree 6
RTree 8
QTree

Most Loaded Nodes

P
ro

ce
ss

ed
 T

up
le

s

Fig. 3: Workload distribution - for the
50 most loaded nodes

Centralized RTree QTree
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

M
es
sa
ge
s/
m
in

Acquisition Data BindingDHT

Fig. 4: Total communication cost

2, acquisition messages, data messages and binding events. Acquisition messages
are those sent by the mobile nodes to a fixed node. Data messages carry the tu-
ples exchanged between peers, relative to query data (incomplete aggregations
that are forwarded up the tree). Binding events capture the additional overhead
associated with uploading the data from mobiles to a fixed node in QTree, where
the node the data is sent varies over time. In all cases, the number of messages
sent by individual nodes is limited at 1 message per pipeline stage every 10
seconds by the use of the timeWindow operator.

Figure 4 presents the total communication cost in the centralized scenario and
in both distribution strategies presented. As expected, decentralized approaches
involve additional messages, as data with intermediate computations needs to
be exchanged among nodes in the system. However, results show that these
messages represent only a small fraction of the messages propagated from the
mobile nodes to the fixed infrastructure in any case. The reason for this is that
messages exchanged by the fixed node usually carry data that is computed from
a large number of data items received from mobile nodes and data propagation
can stop whenever a detection is performed at some tree node.

Comparing the two distribution strategies, RTree exchanges more data mes-
sages than QTree, as expected, because congestion computation tends to be
computed in higher levels of the tree, requiring more messages to be propa-
gated. However, QTree has an additional overhead related with binding events,
as mobile nodes need to know to which fixed node to propagate a message when
they move to a different area. This overhead is important, leading to an overall
larger communication cost in QTree when compared with RTree. In the future,
we intend to explore strategies to reduce the need for these binding events, e.g.,
by caching in mobile nodes the identity of fixed nodes responsible for a query in
adjacent areas.

Detection Latency Detection latency measures the lag between the occurrence
of a segment congestion and its detection by the system. Transient congestions
(lasting less than 20 seconds) were not considered for the evaluation. As the
traffic patterns produced by the traffic model are highly dynamic compared to
real world conditions, with frequent short lived congestions, these experiments
represent a challenging scenario to the system.

2 Corresponding to a fixed cost of 7.5 join/leave DHT events per minute, cf. [5].

10

0 10 20 30 40 50 60 70 80
0

10
20
30
40
50
60
70
80
90

100

RTree 4
RTree 6
RTree 8
QTree

Latency (s)

D
et

ec
tio

ns
 (%

)

Fig. 5: Detection latency

150 200 250 300
0

20
40
60
80

100

RTree 5
RTree 10
RTree 15

150 200 250 300
0

20
40
60
80

100

QTree 5
QTree 10
QTree 15

Time (s)

Su
cc

es
s

(%
)

Fig. 6: Success rate in the presence of
node failures (at time = 100)

Figure 5 plots the detection latency for the accumulated level of success-
ful detections. Results show clearly that QTree detects congestions faster than
RTree. The reason for these results lie in the fact that in QTree, related data
flow to the same nodes faster, making detections to occur in the lower levels of
the tree. Up to 35% of successful detections, latency is similar for QTree and
RTree. This is explained by the fact that, when a road is very congested, with
much more cars than necessary for a detection, even in RTree enough data is
aggregated in the lower levels of the tree.

Failures We implemented a simple failure recovery mechanism consisting in
rebuilding the aggregation tree periodically or when failures exceed a certain
threshold. Using this strategy, we observed that the loss of a small percentage
of nodes has little impact on the query success rate, depending on the sensor
acquisition rate used. Figure 6 summarizes those results, which involved sensor
acquisition intervals of 5, 10 and 15 seconds and the sudden failure of 15% of the
fixed nodes. As expected, detection success is adversely affected by node failures
but afterwards it recovers to its original values. The lower the acquisition rate,
the more pronounced the effect is. This behavior is explained by the fact that
node failures cause the loss of some of the acquired data and, until a new tree
is built, aggregation is impaired due to broken tree paths. If the acquisition
rate is high enough, the effect can be negligible due to data redundancy. In
the opposite case, the impact is more severe since the amount of lost data is
proportionally higher. Comparing both distributed strategies, RTree suffers the
most from node failures. In RTree node failures tend to have a global impact
because data is spread among all nodes, so it requires enough data redundancy
and tree integrity to operate properly. Due to its a priori reliance on data locality,
QTree does not need to aggregate as much, so the effect of node failures is also
much more localized and impacted less by problems in the aggregation tree.

5 Related Work

Participatory sensing has become popular recently [1, 4], but a large number of
supporting systems have already been designed.

In BikeNet [6], users can share information about their bike rides. PEIR [16]
computes estimates of environmental impact and exposure from location sam-
ples. CarTel [12, 7] focus on vehicle based sensing applications and served as

11

inspiration for our evaluation scenario. Although these systems are different,
and some even rely on a delay-tolerant network substrate, they all are based on
a centralized approach. Our work studies decentralized solutions that improves
the scalability of the system, by spreading the load requirements by a large
number of nodes, as shown in the results of our evaluation. Lacking the need for
having a powerful server infrastructure also makes this approach more suitable
for community-based sensing, with the needed resources being contributed by
the community.

Some sensing systems present an architecture built entirely in the mobile
nodes and ad-hoc coordination to support applications (e.g. [18] and [13]). A
limitation of this approach is that mobile nodes have to spend computation,
communication and energy resources in coordination efforts, regarding node and
service discovery and context dissemination. This is specially relevant given that
communication can be expensive and energy is scarce.

Other systems (e.g., [14, 10]) have an architecture more similar to ours, based
on the combination of fixed and mobile nodes. For example, in SensorWeb [10],
a set of fixed nodes act as gateways for sensor network and proxies for mobile
devices. In this system, a coordinator node mediates and coordinates the access
of applications to the different gateways and proxies. Unlike SensorWeb, in our
system, nodes are also used to process information, thus allowing to more evenly
distribute the load.

In wireless sensor networks, a large number of decentralized algorithms have
been proposed [19]. However, these algorithms tend to focus on minimizing en-
ergy consumption and nodes can only communicate with nearby nodes. Thus,
the trees that are formed to aggregate results have very different constraints
when compared to our approach. Our algorithms are closer to distributed pro-
cessing of data streams - e.g. [2, 3]. However, the application scenario makes our
solution different, by having mobile nodes to feed geo-referenced data into the
system periodically. In QTree, we explore this property for aggregating related
data at lower levels of the dissemination tree, allowing to make detections faster.

6 Conclusions

In this paper, we presented and evaluated two algorithms for decentralized pro-
cessing of Participatory Sensing data. Namely, RTree, which leverages random
aggregation trees and personal data repositories, and QTree, which combines
random trees with regular, a priori, subdivision of geographic space.

Their experimental evaluation using simulation and a case-study application,
allow us to draw the following conclusions. Both decentralized solutions, in re-
gards to data processing, show a small total message overhead compared to a
centralized solution, and are clearly competitive. The most loaded node processes
a small fraction of the data in both algorithms. QTree, however, performs better
in this respect, spreading the processing load more evenly. QTree also shows that
it can produce results earlier, exhibiting a smaller processing latency.

As for future work, we intend first to scrutinize how periodic update of the
aggregation trees impacts on load-balancing, processing overhead and query suc-

12

cess and latency. Moreover, we want to evaluate inter-partition interactions and
measure the impact on the overall system performance of inter-partition queries.

References

1. A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, R. A. Peterson, H. Lu,
X. Zheng, M. Musolesi, K. Fodor, and G.-S. Ahn. The rise of people-centric sensing.
Internet Computing, IEEE, 12(4):12–21, 2008.

2. M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Çetintemel, Y. Xing,
and S. B. Zdonik. Scalable distributed stream processing. In CIDR, 2003.

3. T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears.
Mapreduce online. In NSDI2010: Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation, 2010.

4. D. Cuff, M. Hansen, and J. Kang. Urban sensing: out of the woods. Commun.
ACM, 51(3):24–33, 2008.

5. S. Duarte, J. L. Martins, M. Mamede, and N. Preguiça. Catadupa: A load-
balancing and fault-tolerant full-membership substrate for content-based routing.
Technical Report UNL-DI-5-2010, Universidade Nova de Lisboa, August 2010.

6. S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G.-S. Ahn, and A. T.
Campbell. The bikenet mobile sensing system for cyclist experience mapping. In
SenSys ’07: Proceedings of the 5th international conference on Embedded networked
sensor systems, pages 87–101. ACM, 2007.

7. J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakrishnan. The
Pothole Patrol: Using a Mobile Sensor Network for Road Surface Monitoring. In
MobiSys ’08: Proceeding of the 6th Int. Conf. on Mobile systems, applications, and
services, June 2008.

8. H. Ferreira. 4Sensing - Distributed Processing for Participatory Sensing Data.
Master’s thesis, DI - FCT - Universidade Nova de Lisboa, June 2010.

9. R. K. Ganti, N. Pham, Y.-E. Tsai, and T. F. Abdelzaher. Poolview: stream privacy
for grassroots participatory sensing. In SenSys ’08: Proceedings of the 6th ACM
conference on Embedded network sensor systems, pages 281–294. ACM, 2008.

10. W. Grosky, A. Kansal, S. Nath, J. Liu, and F. Zhao. Senseweb: An infrastructure
for shared sensing. Multimedia, IEEE, 14(4):8–13, Oct.-Dec. 2007.

11. A. Gupta, B. Liskov, and R. Rodrigues. One hop lookups for peer-to-peer overlays.
In Ninth Workshop on Hot Topics in Operating Systems, pages 7–12, May 2003.

12. B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. K. Miu, E. Shih,
H. Balakrishnan, and S. Madden. CarTel: A Distributed Mobile Sensor Computing
System. In 4th ACM SenSys, November 2006.

13. N. Kotilainen, M. Weber, M. Vapa, and J. Vuori. Mobile chedar: A peer-to-peer
middleware for mobile devices. In PERCOMW ’05: Proc. of the 3rd IEEE Int.
Conf. on Pervasive Computing and Communications Workshops, pages 86–90.
IEEE Computer Society, 2005.

14. Y. J. L. Marie Kim, Jun Wook Lee and J.-C. Ryou. Cosmos: A middleware for
integrated data processing over heterogeneous sensor networks. ETRI Journal,
30(5), October 2008.

15. Mohan, Prashanth and Padmanabhan, Venkata and Ramjee, Ramachandran . Ner-
icell: Rich Monitoring of Road and Traffic Conditions using Mobile Smartphones.
In Proceedings of ACM SenSys 2008, November 2008.

16. M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin, M. Hansen, E. Howard,
R. West, and P. Boda. Peir, the personal environmental impact report, as a plat-
form for participatory sensing systems research. In MobiSys ’09: Proc. of the 7th
Int. Conf. on Mobile systems, applications, and services, pages 55–68. ACM, 2009.

17. OpenStreeMap. http://www.openstreetmap.org, April 2010.
18. O. Riva and C. Borcea. The urbanet revolution: Sensor power to the people!

Pervasive Computing, IEEE, 6(2):41–49, April-June 2007.
19. J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network survey. Comput.

Netw., 52(12):2292–2330, 2008.

	Decentralized Processing Strategies for Participatory Sensing Data
	Authors
	Introduction
	System Overview
	System Architecture
	Data Model
	Data transformation
	Data Dissemination

	Distribution Strategies
	 RTree
	Query Dissemination and Processing

	 QTree
	Query Dissemination and Processing

	Evaluation
	Workload Distribution
	Communication Load
	Detection Latency
	Failures

	Related Work
	Conclusions
	References

