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Abstract—Cloud storage systems showcase a range of consis-
tency models, from weak to strong consistency. Weakly consis-
tent systems enable better performance, but cannot maintain
strong application invariants, which strong consistency trivially
supports. This paper takes the position that it is possible to
both achieve fast operation and maintain application invariants.
To that end, we propose the novel abstraction of invariant-
preserving CRDTs, which are replicated objects that provide
invariant-safe automatic merging of concurrent updates. The
key technique behind the implementation of these CRDTs is to
move replica coordination outside the critical path of operations
execution, to enable low normal case latency while retaining
the coordination necessary to enforce invariants. In this paper
we present ongoing work, where we show different invariant-
preserving CRDTs designs and evaluate the latency of operations
using a counter that never goes negative.

I. INTRODUCTION

To improve the user experience in services that operate on

a global scale, from social networks and multi-player online

games to e-commerce applications, the infrastructure that

supports those services often resorts to geo-replication [9], [7],

[17], [18], [16], [26], [8], i.e., maintains copies of application

data and logic in multiple data centers scattered across the

globe, providing improved scalability and lower latency. But

not always the advantages of geo-replication are exploited by

worldwide services, because, when services need to maintain

invariants over the data, they have to synchronize with remote

data centers in order to execute some operations, which

negatively impacts operations’ latency. In a geo-replicated

scenario, latency may amount to hundreds of milliseconds.

The impact of high latency in the user’s experience is well

known [22], [11] and has motivated the academia [7], [1], [9]

and industry [13], [5], [25] to use weaker consistency models

with low-latency operations at the trade of data consistency.

When running applications under such weak consistency

models, applications in different data centers execute opera-

tions concurrently over the same set of data leading to tem-

porary divergence between replicas and potentially counter-

intuitive and undesirable user-perceived semantics.
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Good user-perceived semantics are trivially provided by

systems that use strong-consistency models, namely those that

serialize all updates, and therefore preclude that two operations

execute without seeing the effects of one another [8], [16]. Not

all operations require strong guarantees to execute, and some

systems provide both strong and weak consistency models for

different operations [26], [16].

In this paper, we claim that it is possible to achieve the best

of both worlds, i.e., that fast geo-replicated operations can

coexist with strong application invariants without impairing

the latency of operations. To this end, we propose novel

abstract data types called invariant-preserving CRDTs. These

are replicated objects that, like conventional CRDTs [23],

automatically merge concurrent updates, but, in addition, they

can maintain application invariants. Furthermore, we show

how these CRDTs can be efficiently implemented in a geo-

replicated setting by moving the replica coordination that is

needed for enforcing invariants outside the critical path of

operation execution.

In this paper, we discuss cloud consistency models (§II);

present the concept of InvCRDT (§III), abstract data types that

offer invariant-safe operations; discuss the implementation of

these ADTs (§IV); discuss invariants that span multiple objects

(§V-B ); Present the practical benefits of InvCRDTs (§VI) and,

finally, we briefly review related work (§VII) and present our

conclusions (§VIII).

II. DECOMPOSING CONSISTENCY REQUIREMENTS

Recent cloud systems [8], [12], [26], [16] have adopted

strong consistency models to avoid concurrency anomalies.

These models rely on a serializable (or even linearizable)

execution order for operations to provide the illusion that a

single replica exists. They do so at the expense of lower

availability on failures and increased latency for operations

- a direct consequence of the CAP theorem [6], which states

that there is a trade-off between availability and consistency

in systems prone to partitioning.

We argue that enforcing strong consistency is not mandatory

for fulfilling the requirements of most applications. We use the

example of an e-commerce site to motivate such statement, by

identifying three central requirements of this application.

First, users of the application must not observe a past

version of any given data item after observing a more recent
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one – e.g., after adding some item to her shopping cart, the

user does not want to observe a shopping cart where the item

is not present. A way to achieve this without per-operation

replica synchronization is to support causal consistency, as

found in several cloud systems [17], [18].

Second, when concurrent updates exist, data replicas cannot

be allowed to diverge permanently. This requires some form

of automatic reconciliation that deals with concurrent updates

identically in all sites, leading to a consistency model that has

been recently coined as causal+ consistency [17] or fork-join-

causal consistency [19]. For example, after two users add two

different items to a shopping cart, both items should be in the

reconciled version of the shopping cart.

Finally, the e-commerce application has crucial integrity

constraints that must be preserved despite concurrent updates

– e.g., the stock of a product should be greater or equal to

zero, thus avoiding that the store sells more items than what

it has in stock.

In current systems, invariants as the stock example are usu-

ally preserved by running such application (or operations that

can break the invariant [26], [16]) under a strong consistency

model. Instead, we propose to run such applications under

a consistency model that provides the following properties:

causal consistency; automatic reconciliation; and invariant

preservation. We call this consistency model causal+invariants

consistency.

It seems straightforward that enforcing invariants usually

requires some form of coordination among nodes of the system

– e.g., to ensure that a product stock does not go negative, it

is necessary that replicas coordinate so that the number of

successful sales do not exceed the number of items in stock.

However, unlike the solution adopted by strong consistency,

in many situations this coordination can be executed outside

of the critical execution path of operations. In the previous

example, the rights to use the available stock can be split

among the replicas, allowing a purchase to proceed without

further coordination provided replica where the operation is

submitted has enough rights [20], [21].

III. THE CASE FOR INVARIANT-PRESERVING CRDTS

Conflict-free replicated data-types (CRDT [23]) are data

types that leverage the commutativity of operations to auto-

matically merge concurrent updates in a sensible way. Several

CRDT specifications have been proposed for some of the

most commonly used data types, such as lists, sets, maps and

counters, allowing rapid integration in existing applications.

CRDTs provide convergence by design and, when combined

with a replication protocol that delivers operations in causal

order, they trivially provide causal+ consistency [17], [26].

A. The concept of InvCRDTs

In this paper, we propose the concept of invariant-preserving

CRDT (InvCRDT), a conflict-free data type that maintains a

given invariant even in the presence of concurrent operations –

the BoundedCounter [under submission] implements a counter

that cannot be negative.

Some CRDTs already maintain invariants internally by re-

pairing the state – e.g., in the graph CRDT [23], when one user

adds an arc between two nodes and other user concurrently

removes one of the nodes, the graph CRDT does not show

the arc. However, unlike these solutions, InvCRDTs maintain

invariants by explicitly disallowing the execution of operations

that would lead to the violation of an invariant. By having

immediate feedback that an operation cannot be executed, an

application can give that feedback to the users – e.g., in an

e-commerce application, an order will fail if some product

has no stock available, since the operation of decrementing

the stock of the product, aborts when implemented with a

BoundedCounter.

For achieving this functionality, a replica of an InvCRDT

includes both the state of the object and information about

the rights the replica holds. These rights allow the execution

of operations that potentially break invariants without coor-

dination while guaranteeing that the invariants will not be

broken. The union of the rights granted to each of the existing

replicas guarantees that the invariants defined will be preserved

despite any concurrent operation. The set of initial rights will

depend on the initial value of the object. For example, in a

BoundedCounter with initial value 10 and two replicas, each

replica has the rights to increment the counter at any moment

and the rights to execute five decrement operations.

The rights each replica holds are consumed or extended

when an operation is submitted locally – e.g., in the previous

example, a decrement will consume the rights to decrement

by one, and an increment will increase the local rights to

decrement by one. If enough rights exist locally, it is assured

that the execution of the operation in other replicas will

not break the defined invariant. If not enough rights exist

locally, the execution of the method aborts (in our Java-based

implementation, by throwing an exception) and it has no side-

effects in any replica. Optionally, when not enough rights

exist locally, the system may try to obtain additional rights by

transferring them from some other replica(s). In this case, the

method execution blocks until the necessary communication

with other replicas is done. In this case, the overhead of

operation execution will tend to be similar to the overhead

of providing strong consistency.

This model for InvCRDTs is general enough to allow

different implementations, as discussed in the next section.

An important property on InvCRDTs that must be highlighted

is that InvCRDTs do not eliminate the need of coordination

among replicas: they only allow the coordination to be exe-

cuted outside the critical path of execution of an application

request, through the exchange of rights. Next we discuss

the common invariants in applications and how they can be

addressed using InvCRDTs.

B. Using InvCRDTs in applications

There are many examples in the literature of applications

with integrity constraints that are good candidates for using

InvCRDTs.

Li et. al. [16] report that two invariants must be considered
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in TPC-W. First, the stock of a product must be non-negative.

This can be addressed by the BoundedCounter previously

mentioned. Second, the system must guarantee that unique

identifiers are generated in a number of situations where

new data items are created. To address this requirement, the

space of possible identifiers could be partitioned among the

replicas (for example, using the replica identifier as a suffix).

InvCRDT versions of containers (e.g., set, maps) can be

created, where each replica maintains rights for assigning new

unique identifiers to elements added to the object. The authors

also report that similar invariants must be preserved for Rubis.

Cooper et. al. [7] discuss several applications, among them,

one that maintains an hierarchical namespace. Although they

do not explicitly discuss invariants, it is clear to see that

there are two important invariants that should be preserved:

no two objects have the same name; and no cycles exist in

the presence of renames. For the first invariant, we use rights

that preclude two replicas from generating identical names –

a replica must acquire rights to generate identifiers with some

prefix). Maintaining the second invariant is more complex and

requires obtaining the exclusive right to modify the path of

directories from the first common ancestor of the original and

destination names for supporting renames (section V-A). This

can be implemented by extending our graph CRDT [23] with

these rights.

Other applications have invariants on the cardinality of

containers (e.g., a meeting must have at least K members), on

the properties of elements present in containers (e.g., at least

one element of each gender), etc. These invariants can also be

preserved by having InvCRDT versions of those containers.

More recently, Bailis et al.[2] have studied OLTP systems

and summarized typical invariants that show up in applica-

tions. Some of them are instantiations of the ones described

above, while other require more elaborate mechanisms as

discussed in section IV.

IV. SUPPORTING INVCRDTS

We assume a typical cloud computing environment com-

posed by clients and data centers. Data centers run application

servers for handling client requests and a replicated storage

system to persist application data. The effects of client requests

are persisted by modifying the data stored in the system,

represented as InvCRDTs. Finally, a replication protocol that

delivers operations in causal order is used to achieve our

proposed causal+invariants consistency model.

One possible design would consist of managing the rights

associated with InvCRDTs through a centralized server. In this

case, each replica would obtain these rights by contacting such

central entity (as in [20], [21]). We propose an alternative

approach, where the rights associated with an InvCRDT are

maintained in a decentralized way, completely inside the

InvCRDT.

Our generic solution consists in modelling application data

as resources and by keeping the rights of each replica as a vec-

tor of (replicaId ⇒ value) entries for each resource type in all

InvCRDT replicas. Each operation is modelled as consuming

or creating resources. For example, in the BoundedCounter,

a single resource type exists, and a resource corresponds to

one unit in the counter; an increment creates one resource; a

decrement consumes one resource. In an InvCRDT that needs

to generate unique identifiers, the reserved resources are a

subset of the identifiers (e.g., a chunk of consecutive identifiers

or a subset of identifiers ended in the reserved suffix).

Operations that modify the rights vector – consume (sub-

tract), extend (add), transfer (atomically subtract from one

entry and add to another) – are commutative. Thus, they can

be supported in a convergent data-type style, where operations

only need to execute in causal order in the different replicas 1.

Consume and extend operations affect the rights of the replica

where the operations are initiated. The transfer operation must

be initiated in the replica from which the rights are to be

transferred from.

This execution model guarantees that in any given replica

i, the rights that are known to exist for replica i are a

conservative view when considering all operations that can

have been executed. The reason for this is that all operations

that decrement the rights of a given replica, consume and

transfer, are submitted locally, while a remote transfer that

is not yet known may increase the local rights. This property

guarantees the correctness of our approach.

V. DISCUSSION

A. InvCRDT data-types

In section III-A we briefly presented the design of the

BoundedCounter CRDT. We are studying other data-types that

can share the same philosophy of maintaining the state of

the object as well as the rights to execute operations. The

BoundedCounter is a fairly simple example to understand,

however the same idea can be applied to other data-types.

We give the intuition for a few other data-types and what

invariants they can preserve:

Tree Each node in a tree has a unique parent node. This

invariant can be broken by concurrently moving a node and

putting it under two different nodes. A possible solution to

prevent the violation of this invariant consists in associating

to each node a right to modify its subtree. When a replica

acquires rights over a node it automatically acquires the rights

to modify any descendent of that node. The replica that holds

rights over a portion of the tree may give permission to another

replica to modify some subtree, losing the permission itself to

modify any node under that subtree. This strategy enforces a

replica executing a rename operation to hold rights over the

origin and destination names, which prevents any concurrent

operation from creating a cycle.

Graph To implement a graph that is always consistent, i.e.,

an edge always connect to an existing node, without using the

automatic convergence mechanism of the graph CRDT, we

associate rights to each node, which have to be acquired in

order to remove it, or connect an edge. When a new node is

1As with CRDTs, it is possible to design an equivalent solution based on
state propagation.
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created it has rights associated to the replica that created the

node. Preventing cycles in a graph is more complex than in

trees and we have not addressed that so far.

Map Two concurrent puts in a map may end up associating

different element to the same key. To prevent this situation,

we can associate rights to ranges of keys which have to be

acquired in order to execute a put operation. This guarantees

that two different replicas cannot execute a conflicting put

operation. The strategy of key domain partitioning can be used

to provide unique identifiers.

We aim to provide a library of InvCRDTs that support most

of the invariants that are common in applications, however

we are still investigating an easy way to provide them to

programmers.

B. Multi-object invariants

InvCRDTs enforce invariants in a single object. However,

application invariants can often span multiple objects – e.g.,

a user can only checkout a shopping cart if all items are in

stock.

Supporting these invariants requires enforcing some type

of operation grouping. Recently, weakly consistent storage

systems have provided support for some form of transactions

[18], [26]. We could build on this type of support to maintain

invariants over multiple objects – e.g., in the previous example,

a transaction would succeed only if the data center where it

was submitted holds rights to consume all the necessary stock

units of each item.

Some other invariants establish relations that must be main-

tained among multiple objects – e.g., in a courseware appli-

cation, a student can only be part of a course student group

if he or she is enrolled in the course. This invariant can be

maintained either by repairing (e.g., if the students enrolment

in the course is cancelled, the membership in the course

student group is also cancelled) or avoiding the invariant

violation. It seems clear that these types of invariants can

be preserved by restricting concurrent operations in multiple

objects (e.g., avoiding the concurrent creation of a group

and removal of a student involved). However, we are still

studying the best approach to represent them as InvCRDTs.

Additionally, it is also not obvious what is the best way to

define invariant repairing solutions in these cases. Addressing

these issues is also left as future work.

VI. PRELIMINARY EVALUATION

We conducted some preliminary experiments to evaluate the

latency of InvCRDT operations. We made an Erlang prototype

that extends Riak [5] with support for InvCRDTs. Basically the

prototype is a middleware component that is stacked between

the application server and the storage system. The middle-

ware’s main function is to exchange rights between replicas,

so that when operation are executed rights are available locally

and the operation succeed without contacting any remote data

center.

We implemented a micro-benchmark that simulates the

manipulation of items’ stock on purchases in an e-commerce

application: Decrement operations are submitted to a counter

in multiple data centers and the value of the counter cannot

go negative, regardless the operations propagation frequency

between data centers.

We implemented the BoundedCounter and the policies to

exchange rights between replicas. These exchange of rights

occur in the background and try to prevent rights from being

exhausted locally. When a replica runs out of rights and

executes a decrement, it tries to fetch the rights from a remote

data center, which potentially has high latency.

We compare the solution using InvCRDT (BCounter)

against an weak consistency (WeakC) solution that uses a con-

vergent counter and a solution that provides strong consistency

(StrongC) by executing all operations on the same data center.

Riak natively support these features: the convergent counter

is an implementation of the PN-Counter CRDT [23] and the

strong consistency solution uses a consensus algorithm based

on the Paxos algorithm [14].

We did not implemented true causality in our prototype,

instead the middleware provides key-linearizability, which

is sufficient because in the experiments all operations are

executed in a single-object. Key-linearizibility is necessary to

avoid concurrent requests to use the same rights within the

same data center.

A. Experimental Setup

Our experiments comprised 3 Amazon EC2 data centers

distributed across the globe. We installed a Riak data store

in each EC2 availability zone (US-East, US-West, EU). Each

Riak cluster is composed by three m1.large machines, with

2 vCPUs, producing 4 ECU2 units of computational power,

and with 7.5GB of memory available. We use Riak 2.0.0pre5

version.

a) Operations latency: Figure 1 details these results by

showing the CDF of latency for operation execution. As

expected, the results show that for StrongC, remote clients

experience high latency for operation execution. This latency

is close to the RTT latency between the client and the DC

holding the data. For StrongC, each step in the line consists

mostly of operations issued in different DCs.

Both BCounter and WeakC experience very low latency. In

a counter-intuitive way, the latency of BCounter is sometimes

even better than the latency of WeakC. This happens because

our middleware caches the counters, requiring only one access

to Riak for processing an update operation when compared

with two accesses in WeakC (one for reading the value of the

counter and another for updating the value if it is positive).

Figure 2 furthers details the behaviour of our middleware,

by presenting the latency of operations over time. The results

show that most operations take low latency, with a few peak

of high latency when a replica runs out of rights and needs to

ask for additional rights from other data centers. The number

of peaks is small because most of the time the pro-active

21 ECU corresponds is a relative metric used to compare instance types in
the AWS platform
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mechanism for exchanging rights is able to provision a replica

with enough rights before all rights are used.

VII. RELATED WORK

A large number of cloud storage systems supporting geo-

replication have been developed in recent years. Some of these

systems [9], [17], [18], [1], [13] provide variants of eventual

consistency, where operations return immediately after being

executed in a single data center. This approach has the lowest

latency possible for end-users, but since the guarantees they

provide are so weak, a handful of other systems try to provide

better semantics for the user and still avoid cross data center

coordination, such as those that provide causal consistency

[17], [1], [10], [3]. We target to provide similar ordering

guarantees of messages but improve over these systems by

maintaining applications invariants that require some form of

coordination.

Systems that provide strong consistency[8] incur in coor-

dination overhead that increases latency of operations. Some

systems tried to combine the benefits of weak and strong

consistency models by supporting both models. In Walter [26]

and Gemini [16], transactions that can execute under weak

consistency run fast, without needing to coordinate with other

data centers.

More recently, Sieve [15] automates the decision between

executing some operation in weak or strong consistency. Bailis

et al. [2] have also studied when it is possible to avoid co-

ordination in database systems, while maintaining application

invariants. Our work is complimentary, by providing solutions

that can be used when coordination cannot be avoided.

Escrow transactions [20] have been proposed as a mech-

anism for enforcing numeric invariants while allowing con-

current execution of transactions. The key idea is to enforce

local invariants in each transaction that guarantee that the

global invariant is not broken. The original escrow model is

agnostic to the underlying storage system and in practice was

mainly used to support disconnected operations [24], [21] in

mobile computing environments, using a centralized solution

to handle reservations.

The demarcation protocol [4] is an alternative that has been

proposed to maintain invariants in distributed databases and

recently applied to optimize strong-consistency protocols [12].

Although the underlying protocol are similar to escrow-based

solutions, the demarcation protocol focus on maintaining in-

variants across different objects.

We aim to combine these different mechanism to provide

an unified framework that programmers can use to improve

the consistency of applications given the same assumptions as

in weak consistency systems.

VIII. CONCLUSION

This paper presents a weak consistency model, extended

with invariant preservation for supporting geo-replicated ser-

vices. For supporting the causal+invariants consistency model,

we propose a novel abstraction called invariant-preserving

CRDTs, which are replicated objects that provide both sensible

merge of concurrent updates and invariant preservation in

the presence of concurrent updates. We outline the design of

InvCRDTs that can be deployed on top of systems providing

causal+ consistency only. Our approach provides low latency

for most operations by moving the necessary coordination

among nodes outside of the critical path of operation exe-

cution.

The next steps in our work are to build a library of CRDTs

that programmers can use to maintain application invariants as

well as providing a programming model that ease the use of

these data-types in applications. One possibility would be to

categorize invariants and have specific data-types to preserve

each of them with low-latency. We are also still studying how

to maintain invariants that span multiple objects and what

guarantees does the replication model must provide in order

to maintain them.

The preliminary evaluation showed that it is possible to
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maintain invariants under weak consistency by relying on

a proactive rights exchange mechanism to transfer rights

between replicas.
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