
Legion: Enriching Internet Services with Peer-to-Peer
Interactions∗

Albert van der Linde1 Pedro Fouto1 João Leitão1 Nuno Preguiça1

Santiago Castiñeira2 Annette Bieniusa2

1NOVA LINCS & DI, FCT, Universidade NOVA de Lisboa
2University of Kaiserslautern

ABSTRACT
Many web applications are built around direct interactions among
users, from collaborative applications and social networks to multi-
user games. Despite being user-centric, these applications are usu-
ally supported by services running on servers that mediate all inter-
actions among clients. When users are in close vicinity of each
other, relying on a centralized infrastructure for mediating user
interactions leads to unnecessarily high latency while hampering
fault-tolerance and scalability.

In this paper, we propose to extend user-centric Internet ser-
vices with peer-to-peer interactions. We have designed a frame-
work named Legion that enables client web applications to securely
replicate data from servers, and synchronize these replicas directly
among them. Legion allows for client-side modules, that we dub
adapters, to leverage existing web platforms for storing data and
to assist in Legion operation. Using these adapters, legacy ap-
plications accessing directly the web platforms can co-exist with
new applications that use our framework, while accessing the same
shared objects. Our experimental evaluation shows that, besides
supporting direct client interactions, even when disconnected from
the servers, Legion provides lower latency for update propagation
with decreased network traffic for servers.

Keywords
Web Applications; Peer-to-Peer Systems; CRDTs; Frameworks

1. INTRODUCTION
A large number of web applications mediate interactions among

users. Examples are plentiful, from collaborative applications, to
social networks, and multi-user games. These applications manage
a set of shared objects, the application state, and each user reads and
∗This work was partially supported by FCT/MCTES: HYRAX
project (CMUP-ERI/FIA/0048/2013); NOVA LINCS project
(UID/CEC/04516/2013) and the European Union, through project
Syncfree (grant agreement n◦609551) and LightKone (grant agree-
ment n◦732505). Part of the computing resources used for this
work were supported by an AWS in Education Research Grant.

c©2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.
WWW 2017, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3052673

.

writes on a subset of these objects. For example, in a collaborative
text editor, users share the document being edited, while in a multi-
user game the users access and modify a shared game state. In
these cases, user experience is highly tied with how fast interactions
among users occur.

These applications are typically implemented using a centralized
infrastructure that maintains the shared state and mediates all inter-
actions among users. This approach has several drawbacks. First,
servers become a scalability bottleneck, as all interactions have to
be managed by them. The work performed by servers has polyno-
mial growth with the number of clients, as not only there are more
clients producing contributions but also each contribution must be
disseminated to a larger number of clients. Second, when servers
become unavailable, clients become unable to interact, and in many
cases, they cannot even access the application. Finally, the latency
of interaction among nearby users is unnecessarily high since op-
erations are always routed through servers. This might not be no-
ticeable for applications with low interaction rates such as social
networks. However, user experience in games and collaborative
applications relies on interactive response times below 50ms [22].

One alternative to overcome these drawbacks is to leverage on di-
rect interactions among clients, thus making the system less depen-
dent on the centralized infrastructure. Besides avoiding the scala-
bility bottleneck and availability issues of typical web application
architectures, such an approach can also improve user experience
by reducing the latency of interactions among clients. Addition-
ally, it has the potential to lower the load imposed on centralized
components, minimizing the infrastructure cost.

While there has been significant work in the design of peer-to-
peer systems (e.g. [36, 28, 18, 9, 41, 27]), two main reasons pre-
vented its adoption for improving web applications. First, web
browsers restricted the ability to establish direct communication
channels among clients. Recently, the Web Real Time Communica-
tion (WebRTC) initiative [5] has solved this limitation by enabling
direct communication between browsers. Second, firewalls (and
NAT boxes) restricted connectivity among client nodes. This prob-
lem can currently be circumvented by relying on widely available
techniques, such as STUN and TURN [30]. Additionally, HTML5
makes it possible for these applications to locally store data that
persists across sessions on the same browser. The combination of
these techniques has created the opportunity for a new generation
of web applications that can leverage peer-to-peer interactions.

In this work, we present Legion, a framework that exploits these
new features for enriching web applications. Each client maintains
a local data store with replicas of a subset of the shared appli-
cation objects. We designed Legion to support web applications
where groups of, at most, a few hundreds of users, collaborate
by manipulating the same set of data objects. Legion adopts an

283

eventual consistency model where each client can modify its local
replica without coordination, while updates are propagated asyn-
chronously to other replicas. To guarantee that all replicas con-
verge to the same state despite concurrent updates, Legion relies
on Conflict-free Replicated Data Types (CRDTs) [34]. CRDTs
are replicated data types designed to provide eventual convergence
without resorting to strong coordination.

Unlike systems [21, 32, 42, 4] that cache objects at the client,
Legion clients can synchronize with the servers and directly among
each other, using a peer-to-peer interaction model. To support these
interactions, (subsets of) clients form overlay networks to propa-
gate objects and updates among them. This induces low latency for
propagating updates and objects between nearby clients.

Unlike uniform overlay networks [28, 18], Legion adopts a non-
uniform design where a few selected nodes act as bridges between
the client network and the servers that store data persistently. These
active nodes upload updates executed by clients in the network and
download new updates executed by clients that have not joined the
overlay (including both legacy clients and clients unable to estab-
lish direct connections with other clients). This design reduces the
load on the centralized component, which no longer needs to broad-
cast every update to all clients (nor track these clients).

While leveraging direct client interactions brings significant ad-
vantages, it also creates security challenges. We address these chal-
lenges by making it impossible for an unauthorized client to access
objects or interfere with operations issued by authorized clients.
Our design uses lightweight cryptography and builds on the ac-
cess control mechanism of the central infrastructure to securely dis-
tribute keys among clients.

Client-side modules, adapters, allow Legion to, instead of using
its own standalone servers, leverage existing web infrastructures
for storing data and assist in several functions of the framework, in-
cluding peer discovery, overlay management, and security manage-
ment. As a showcase, we describe our adapters for Google Drive
Realtime (GDriveRT), a Google service for supporting collabora-
tive web applications similar to Google Docs [21]. The GDriveRT
adapters allow Legion to: (i) store data in GDriveRT, while expos-
ing an API and data model compatible with GDriveRT; (ii) support
interaction between Legion-enriched clients accessing local object
replica and legacy clients accessing the same GDriveRT objects di-
rectly; and (iii) resort to GDriveRT to assist in establishing initial
peer-to-peer connections among clients.

Our evaluation shows that porting existing GDriveRT applica-
tions requires changing only a few lines of code (2 lines in the
common case), allowing them to start benefiting from direct inter-
actions among clients. We also show that the latency to propagate
updates is much lower in Legion when compared with the use of
a traditional centralized infrastructure, as in GDriveRT. Addition-
ally, clients can continue to interact when the server becomes (tem-
porarily) unreachable. Updates are stored locally and can be made
durable by any active client when the server becomes available, ei-
ther in the context of the same session or a future session. Since
we avoid continuous access to the centralized infrastructure by all
clients, the network traffic induced on the centralized component is
lower, improving the scalability of the system. We also show that
our security mechanisms have minimal overhead.

In summary, we present the design of Legion, a novel frame-
work to enrich web applications through client side replication and
(transparent) direct peer-to-peer interactions. To achieve this, and
besides introducing the design of the Legion architecture, we make
the following contributions:

• a data storage service for web clients, providing causal con-
sistency and using CRDTs (§ 3.2);

• a topology-aware overlay-network core that uses WebRTC
and promotes low-latency links between clients (§ 3.1.2);

• a lightweight security mechanism that protects privacy and
integrity of data shared among clients (§ 3.3);

• a set of client adapters that integrate Legion with GDriveRT,
storing data in the GDriveRT service, providing a seamless
API and support for inter-operation with legacy clients (§ 4);

• the implementation (§ 5) and evaluation (§ 6) of a prototype
that demonstrates the benefits of our approach in terms of
latency for clients and reduced load on servers.

2. RELATED WORK
Our work has been influenced by prior research in multiple areas.
Internet services: Internet services often run in cloud infras-

tructures composed by multiple data centers, and rely on a geo-
replicated storage system [15, 29, 7, 12, 13] to store application
data. Some of these storage systems provide variants of weak con-
sistency, such as eventual consistency [15] and causal consistency
[29, 7], where different clients can update different replicas con-
currently and without coordination. Similar to Google Drive Real-
time, Legion adopts an eventual consistency model where updates
to each object are applied in causal order.

Other storage systems adopt stronger consistency models, such
as parallel snapshot isolation [35] and linearizability [13], where
concurrent (conflicting) updates are not allowed without some form
of coordination. Coordination among replicas for executing each
update is prohibitively expensive for high throughput and large
numbers of clients (manipulating the same set of data objects).

Replication at the clients: While many web applications are
stateless, fetching data from servers whenever necessary, a number
of applications cache data on the client for providing fast response
times and support for disconnected operation. For example, Google
Docs and Google Maps can be used in offline mode; Facebook also
supports offline feed access [17].

Several systems that replicate data in client machines have been
proposed in the past. In the context of mobile computing [38], sys-
tems such as Coda [25] and Rover [23] support disconnected oper-
ation relying on weak consistency models. Parse [4], SwiftCloud
[42] and Simba [32] are recent systems that allow applications to
access and modify data during periods of disconnection. While
Parse provides only an eventual consistency model, SwiftCloud ad-
ditionally supports highly available transactions [8] and enforces
causality. Simba allows applications to select the level of observed
consistency: eventual, causal, or serializability. In contrast to these
systems, our works allows clients to synchronize directly with each
other, thus reducing the latency of update propagation and allowing
collaboration when disconnected from servers.

Bayou [39] and Cimbiosys [33] are systems where clients hold
data replicas and that exploit decentralized synchronization strate-
gies (either among clients [33] or servers [39]). Although our work
shares some of the goals and design decisions with these systems,
we focus on the integration with existing Internet services. This
poses new challenges regarding the techniques that can be used
to manage replicated data and the interaction with legacy clients,
namely because most of these services can only act as storage lay-
ers (i.e., they do not support performing arbitrary computations).

Collaborative applications: Several applications and frameworks
support collaboration across the Internet by maintaining replicas of
shared data in client machines. Etherpad [16] allows clients to col-
laboratively edit documents. ShareJS [20] and Google Drive Real-
time [21] are generic frameworks that manage data sharing among

284

multiple clients. All these systems use a centralized infrastructure
to mediate interactions among clients and rely on operational trans-
formation for guaranteeing eventual convergence of replicas [31,
37]. In contrast, our work relies on CRDTs [34] for guaranteeing
eventual convergence while allowing clients to synchronize directly
among them. Collab [11] uses browser plugins to allow clients in
the same area network to replicate objects using peer-to-peer. Our
work uses standard techniques for supporting collaboration over
the Internet, requiring no installation by the end user, and allowing
interaction with existing Internet services.

Peer-to-Peer systems: Extensive research on decentralized un-
structured overlay networks [28, 41, 18] and gossip-based multicast
protocols [9, 28, 10] have been produced in the past. Although our
design for supporting peer-to-peer communication among clients
builds on HyParView overlay network [28], it differs from this sys-
tem in the way it promotes low latency links among clients and
leverages the centralized infrastructure for handling faults efficiently.

3. SYSTEM DESIGN
Legion is a framework for data sharing and communication among

web clients. It allows programmers to design web applications
where clients access a set of shared objects replicated at the client
machines. Web clients can synchronize local replicas directly with
each other. For ensuring durability of the application data as well
as to assist in other relevant aspects of the systems operation (dis-
cussed further ahead), Legion resorts to a set of centralized ser-
vices. We designed Legion so that different Internet services (or a
combination of Internet services and Legion’s own support servers)
can be employed. These services are accessed uniformly by Legion
through a set of adapters with well defined interfaces.

By replicating objects in web clients and synchronizing in a peer-
to-peer fashion, Legion reduces dependency and load on the cen-
tralized component (as the centralized component is no longer re-
sponsible to propagate updates to all clients), and minimizes la-
tency to propagate updates (as they are distributed directly among
clients). Furthermore, it allows clients (already running) to con-
tinue interacting when connectivity to servers is lost.

Figure 1 illustrates the client-side architecture of Legion with the
main components and their dependencies/interactions:
Legion API: This layer exposes the API through which applica-
tions interact with our framework.
Communication Module: The communication module exposes
two secure communication primitives: point-to-point and point-to-
multipoint. Although these primitives are available to the applica-
tion, we expect applications to interact using shared objects stored
in the object store.
Object Store: This module maintains replicas of objects shared
among clients, which are grouped in containers of related objects.
These objects are encoded as CRDTs [34] from a pre-defined (and
extensible) library including lists, maps, strings, among others. Web
clients use the communication module to propagate and receive up-
dates to keep replicas up-to-date.
Overlay Network Logic: This module establishes a logical net-
work among clients that replicate some (shared) container. This
network defines a topology that restricts interactions among clients,
meaning that only overlay neighbors maintain (direct) WebRTC
connections among them and exchange information directly.
Connection Manager: This module manages connections estab-
lished by a client. To support direct interactions, clients maintain
a set of WebRTC connections among them. (Some) Clients also
maintain connections to the central component, as discussed below.

Legion uses two additional components that reside outside of the
client domain:

Figure 1: The Legion Architecture.

• one or more centralized infrastructures accessed through ada-
pters for: (i) user authentication and key management (au-
thentication and key management adapter); (ii) durability of
the application state and support for interaction with legacy
clients (storage adapter); (iii) exposing an API similar to the
server API, thus simplifying porting applications to our sys-
tem (service API adapter); (iv) assisting clients to initially
join the system (signaling adapter);

• a set of STUN [30] servers, used to circumvent firewalls and
NAT boxes when establishing connections among clients.

Our prototype includes adapters for GDriveRT and for a simple
Node.js [24] server implemented by us. For STUN servers, our
prototype relies on Google’s public STUN servers.

In the remainder of this section we discuss in more detail the
design of each of the modules that compose the Legion framework.

3.1 Communications

3.1.1 Communication Module
The communication module exposes an interface with point-to-

point and multicast primitives, allowing a client to send a message
to another client or to a group of clients. In Legion, each container
has an associated multicast group that clients join when they start
replicating an object from the container. Updates to objects in some
container are propagated to all clients replicating the container.

Messages are propagated through the overlay network(s) pro-
vided by the Overlay Network Logic module. The multicast prim-
itive is implemented using a push-gossip protocol (similar to the
one presented in [28]).

Messages exchanged among clients are protected using a sym-
metric cryptographic algorithm, using a key (associated with each
container) that is shared among all clients and obtained through the
centralized component. Clients need to authenticate towards the
centralized component to obtain this key, ensuring that only autho-
rized (and authenticated) clients are able to observe and manipulate
the objects of a container. We provide additional details about this
mechanism further ahead.

3.1.2 Overlay Network Logic
Legion maintains an independent overlay for each container, defin-

ing the communication patterns among clients (i.e., which clients
communicate directly). The overlay is used to support the multicast
group associated with that container.

Our overlay design is inspired by HyParView [28]. It has a ran-
dom topology composed by symmetric links. Each client maintains
a set of K neighbors (where K is a system parameter with values typ-
ically below 10 for medium scale systems as the ones we target in

285

this paper). Overlay links only change in reaction to external events
(clients joining or leaving/failing).

In contrast to HyParView, we have designed our overlay to pro-
mote low latency links. As such, each client connects to K peers,
with K = Kn + Kd, where Kn denotes the number of nearby neigh-
bors and Kd denotes the number of distant neighbors.

As shown by previous research [26], each client must maintain a
small number of distant neighbors when biasing a random overlay
topology to ensure global overlay connectivity and yield better dis-
semination latency while retaining the robustness of gossip-based
broadcast mechanisms.

This requires clients to classify potential neighbors as being ei-
ther nearby or distant. A common mechanism to determine whether
a potential neighbor is nearby or distant is to measure the round-
trip-time (RTT) to that node [26]. However, in Legion, since clients
are typically running in browsers, it is impossible to efficiently
measure round trip times between them, since a full WebRTC con-
nection would have to be setup, which has non-negligible overhead
due to the associated signaling protocol.

To circumvent this issue we rely on the following strategy that
avoids clients to perform active measurements of RTT to other
nodes. When a client starts, it measures its RTT to a set ofW well-
known web servers through the use of an HTTP HEAD request
(the web servers employed in this context are given as a configu-
ration parameter of the deployment). The obtained values are then
encoded in an ordered tuple which is appended to the identifier of
each client. These tuples are then used as coordinates in a virtual
Cartesian space ofW dimensions. This enables each client to com-
pute a distance function between itself and any other client c given
only the identifier of c.

3.1.3 Connection Manager
This module manages all communication channels used by Le-

gion, namely server connections to the centralized infrastructure,
and peer connections to other clients. We now briefly discuss the
management of these connections.

Server Connections: A server connection offers a way for Le-
gion clients to interact with the centralized infrastructure. We have
defined an abstract connection that must be instantiated by the adapters
that provide access to the centralized services. The connection for
the Legion Node.js server uses web sockets. For the GDriveRT
adapter, connections are established and authenticated for each con-
tainer (document in GDriveRT). Independently of the employed
centralized component, server connections are only kept open by
active clients.

Peer Connections: A peer connection implements a direct We-
bRTC connection between two clients 1. To create these connec-
tions, clients have to be able to exchange – out of band – some
initial information concerning the type of connection that each end-
point aims to establish and their capacity to do so, which also in-
cludes information necessary to circumvent firewalls or NAT boxes
using STUN/TURN servers. This initial exchange is known, in the
context of WebRTC, as signaling.

Legion uses the centralized infrastructure for supporting the exe-
cution of the signaling protocol between a client joining the system
and its initial overlay neighbors (that have to be active clients i.e.,
with active server connections). After a client establishes its initial
peer connections, it starts to use its overlay neighbors to find new
peers. In this case, the signaling protocol required to establish these
new peer connections is executed through the overlay network di-

1 Our experiments have shown that WebRTC connections can be
established even among mobile devices using 3G/4G connectivity
when devices use the same carrier.

rectly. If a client gets isolated and needs to rejoin the overlay, it re-
lies again on the help of the centralized infrastructure. This greatly
simplifies fault handling at the overlay management level.

The signaling adapter for GDriveRT stores information on a hid-
den document associated with the (main) document. Alternatively,
clients can use the Legion native Node.js signaling server.

3.2 Object Store
The object store maintains local replicas of shared objects, with

related objects grouped in containers. Client applications interact
by modifying these shared objects. Legion offers an API that en-
ables an application to create and access objects.

CRDT library: Legion provides an extensible library of data
types, which are internally encoded as CRDTs [34]. Objects are ex-
posed to the application through (transparent) object handlers that
hide the internal CRDT representation.

The CRDT library supports the following data types: Coun-
ters, Strings, Lists, Sets, and Maps. Our library uses ∆-based
CRDTs [40], which are very flexible, allowing replicas to synchro-
nize by using deltas with the effects of one or more operations, or
the full state. This new type of delta-based CRDTs [6] is specially
designed to allow efficient synchronization in epidemic settings, by
avoiding, most of the times, a full state synchronization when two
replicas connect for the first time. Each data type includes type-
specific methods for querying and modifying its internal state, and
generic methods to compute and integrate deltas (i.e., differences).

Causal Propagation: This module uses the multicast primitive
of the Communication module to propagate and receive deltas that
encode modifications to the state of local replicas in a way that
respects causal order (of operations encoded in these deltas). To
achieve this, we use the following approach.

For each container, each client maintains a list of received deltas.
The order of deltas in this list respects causal order. A client propa-
gates, to every client it connects to, the deltas in this list respecting
their order. The channels established between two clients are FIFO,
i.e., deltas are received in the same order they have been sent.

When a client receives a delta from some other client, two cases
can occur. First, the delta has been previously received, which can
be detected by the fact that the delta timestamp is already reflected
in the version vector of the container. In this case, the delta is
discarded. Second, the delta is received for the first time. In this
case, besides integrating the delta, the delta is added to the end of
the lists of deltas to be propagated to other peers.

To prove that this approach respects causal order, we need to
prove that when a delta d is received in a client cr , all deltas that
precede d in the causal order have already been received. This
follows from the fact that if delta d has been received from client
cs and we know that client cs sends deltas in causal order, then cs
has already sent all deltas that precede d in the causal order. By
the same reason, the lists of deltas to propagate to other nodes in cr
also respect causal order after adding d to the end of their list. The
formal proof for this property can be achieved by induction.

The actual implementation of Legion only keeps a suffix of the
list of deltas received. Note that, at the start of every synchroniza-
tion step, clients exchange their current vector clocks, which allow
them, in the general case where their suffix list of deltas is large
enough to include the logical time of their peer replicas, to gener-
ate deltas for propagation that contain only operations that are not
yet reflected in that peer’s state.

However, when two clients connect for the first time (or re-connect
after a long period of disconnection), it might be impossible (or, at
least, inefficient) to compute the adequate delta to send to its peer.
In this case the two clients will synchronize their replicas by us-

286

ing the efficient initial synchronization mechanism supported by
∆-based CRDTs. In this case, if only a delta has been received, it
is added to the list of deltas for propagation to other nodes. If it was
necessary to synchronize using the full state, then the client needs
to execute the same process to synchronize with other clients it is
connected to.

3.3 Security Mechanisms
Allowing clients to replicate and synchronize among them a sub-

set of the application state offers the possibility to improve latency
and lower the load on central components. However, it also leads
to concerns from the perspective of security, in particular regarding
data privacy and integrity. In more detail, privacy might be compro-
mised by allowing unauthorized users to circumvent the central sys-
tem component to obtain copies of data objects from other clients;
additionally, integrity can be compromised by having unauthorized
users manipulate application state by propagating their operations
to authorized clients.

We assume that an access control list is associated with each data
container, and that clients either have full access to a container (be-
ing allowed to read and modify all data objects in the container) or
no access at all. While more fine-grained access-control policies
could easily be established, we find that this discussion is orthogo-
nal to the main contributions of this paper. We also assume that the
centralized infrastructure is trusted and provides an authentication
mechanism that ensures that only authorized clients can observe
and modify data in each container. Finally, we do not address situ-
ations where authorized clients perform malicious actions.

Considering these assumptions, Legion resorts to a simple but ef-
fective mechanism that operates as follows. The centralized infras-
tructure generates and maintains, for each container C, a persistent
symmetric key KC within that same container. Due to the authen-
tication mechanism of the centralized infrastructure, only clients
with access to a container C can obtain KC . Every Legion client
has to access the infrastructure upon bootstrap, which is required
to exchange control information required to establish direct con-
nections to other clients. During this process, clients also obtain
the key KC for the accessed container C.
KC is used by all Legion clients to encrypt the contents of all

messages exchanged directly among clients for container C. This
ensures that only clients that have access to the corresponding con-
tainer (and have authenticated themselves towards the centralized
component) can observe the contents and operations issued over
that container, addressing data privacy related challenges.

Whenever the access control list of a container is modified to re-
move some user, the associated symmetric key is invalidated, and
a new key for that container is generated by the centralized infras-
tructure (we associate an increasing version number to each key
associated with a given container).

To enable clients to detect when the key is updated in a timely
fashion, the centralized component periodically generates a crypto-
graphically signed message (using the asymmetric keys associated
with the certificate of the server, used to support SSL connections)
containing the current version of the key, and a nonce. This mes-
sage is sent by the server to active peers, that disseminate the mes-
sage (without being encrypted) throughout the overlay network.

If a client receives a message encrypted with a different key from
the one it knows, either the client or its peer have an old key. When
the client has an old key (with a version number smaller than the
version number of the key used to encrypt the message), the client
contacts the centralized infrastructure to obtain the new key. Oth-
erwise, the issuer of the message has an old key and the client dis-
cards the received message and notifies the peer that it is using an

old key. This will lead the sender of the message to connect to the
central infrastructure (going again through authentication) to up-
date the key before re-transmitting the message.

Note that clients that have lost their rights to access a container
are unable to obtain the new key and hence, unable to modify the
state of the application directly on the centralized component, send
valid updates to their peers, or decrypt new updates.

While there might be a small increase in communication with the
centralized infrastructure when a user’s access is revoked (as a new
key has to be generated and distributed), we believe that removing
user permissions in collaborative web applications is not a frequent
task. Furthermore, several access revocations can be compressed
into a single update of the access control list (requiring only the
generation and distribution of a single key).

4. ADAPTERS: GDriveRT
In this section we describe the adapters that can be used to inte-

grate Legion with GDriveRT. In total (see Figure 1) we have im-
plemented 4 distinct adapters with the following purposes: (i) a
storage adapter enables Legion to outsource storage of application
state and to (optionally) support GDriveRT legacy clients; (ii) a
signaling adapter enables the use of GDriveRT to support signaling
for establishing WebRTC connections; (iii) an authentication and
key management adapter enables Legion to outsource to GDriveRT
both user authentication and key management and distribution; and
finally (iv) a service API adapter that exposes to client applications
an interface similar to the GDriveRT API.

To simplify our prototyping, we have implemented these adapters
as a single component, that enables the programmer to configure
which adapters should be enabled (when an adapter is disabled,
the functionality provided by it is delegated to the Legion Node.js
server). In this section we discuss the most relevant aspects related
with the design and implementation of these adapters which cover
the specific challenges that a programmer faces when integrating
Legion with an existing Web platform.

4.1 Data model
Our GDriveRT storage adapter supports the same data model as

GDriveRT, in which collaboration among users is performed at the
level of documents. A document contains a set of data objects and
is mapped to a Legion container. Each object inside a document
is mapped to an object of a similar type in Legion. The adapter
transparently performs this mapping.

The associated service API adapter provides applications with an
API similar to the GDriveRT API. The main functions of the API
include a method to load a document that initializes the Legion
framework. This method gives access to a handler for the docu-
ment, which can be used by the application to read and modify
the data objects included in the document state. As discussed, up-
dates executed to the objects of a document’s replica are delivered
to other document replicas in causal order, i.e., Legion enforces
causal consistency for operations over a document.

By exposing the same API of GDriveRT, this adapter enables
any web application written in JavaScript that uses the GDriveRT
API to be (easily) ported to Legion through the manipulation of a
few lines of JavaScript code, namely: (i) adding an include state-
ment to the script file with the code of Legion (and adapters) and
(ii) replacing the function call to load a document by the equivalent
function of the Legion GDriveRT service API adapter. With the
handler for the loaded document, the application can use exactly
the same function calls as in GDriveRT.

287

4.2 Legion functionality
Our Legion storage adapter can also leverage the GDriveRT in-

frastructure to: serve as a gateway between partitioned overlays
that replicate the same GDriveRT document; and reliably store ap-
plication state, i.e., documents and associated objects.

For serving as a gateway between partitioned overlays, for each
document, the adapter maintains in GDriveRT the list of deltas of
the document. As discussed before, in each overlay, a set of ac-
tive clients is responsible to upload deltas executed by clients in
the overlay and to download and disseminate new deltas through-
out the overlay. If more than one client executes this process in
each overlay, this does not affect correctness, as a delta received in
a client is discarded if its timestamp is already reflected in the ver-
sion vector of the replica. By the same reason that the list of deltas
maintained by a client respects causal order, it follows that the list
of deltas maintained in GDriveRT respects causal order. As a con-
sequence, deltas downloaded from GDriveRT are also disseminated
in an order that respects causality.

4.3 Support for Legacy Applications
While Legion allows web applications to explore peer-to-peer in-

teractions using the Legion framework, it is also possible to allow
legacy client applications to continue accessing data using the orig-
inal GDriveRT interface by enabling a special option on our storage
adapter (this support, as we show in § 6, incurs in some overhead).

When supporting legacy clients, for each data object, Legion
keeps two versions: the version manipulated by Legion and the
version manipulated by legacy applications. The key challenge is
to keep both versions synchronized. This process is executed by a
Legion client, as follows.

Applying operations executed in Legion clients to the GDriveRT
object is a straightforward process that requires converting a delta
stored in the list of executed deltas to the corresponding GDriveRT
operations and executing them.

Applying operations executed in a GDriveRT object to the Le-
gion object is slightly more complex because it is necessary to infer
the executed operations. To this end, the client executing the syn-
chronization process records the version number of the GDriveRT
document in which the process is executed. In the next synchro-
nization, the client infers the updates produced by legacy clients by
comparing the current version of the document against the version
after the last synchronization (using a diff algorithm). The updates
are converted into a delta and added to the log of executed deltas,
guaranteeing that the deltas are applied to Legion objects.

Both synchronization steps need to be executed by a single client
to guarantee an exactly-once transfer of updates from one version
to the other. We implement an election mechanism for selecting
the client relying on a GDriveRT list. When no client is executing
this process, a client willing to do it checks the version number of
the document and the current size of the list, and then writes in the
list the tuple < id, n, t >, with id being the client identifier, n the
observed size of the list, and t the time until when the client will be
executing the process (for periods in the order of seconds or min-
utes). The client then reads the following version of the document,
which guarantees that its write has been propagated to GDriveRT
servers. If the tuple the client has written is in position n + 1, the
client is elected to execute the process. This is correct, as if two
clients concurrently try to be elected, the tuple of only one will be
in position n+ 1 of the list in the new version of the document.

4.4 Security in GDriveRT
When using GDriveRT, we can leverage on the existing authen-

tication mechanism of GDriveRT to perform access control. The

security mechanism presented previously had to be slightly adapted
as to ensure compatibility with the authentication and key manage-
ment adapter due to the fact that GDriveRT only provides storage.
GDriveRT exposes no computational capabilities, being therefore
unable to generate symmetric keys, nor generate signed messages
periodically to speed up the notification of clients of key changes.

To address these challenges we made the following modifica-
tions. First, when a new container C is created, the symmetric key
KC associated with that container is created by the first Legion
client that accesses the container (after performing authentication).

Additionally, when a client removes a user’s access to a con-
tainer, it also generates a new key for that container. Using the
GDriveRT authentication and key management adapter, active clients
monitor the key, such that if the key is modified, they disseminate
a notification through the overlay network, leading the remaining
clients to access the centralized infrastructure to obtain it.

To deal with scenarios where users associated with all active
peers have their access to a container revoked, every client period-
ically contacts the centralized component to verify that the known
key is still valid. This step can be performed infrequently because,
as soon as a single client becomes aware of a new key, the knowl-
edge that a new key exists is epidemically propagated throughout
the overlay network, as that client will start to use the new key to
encrypt all messages exchanged with its neighbors, leading them to
fetch the new key from the centralized infrastructure.

5. IMPLEMENTATION DETAILS
We now provide a few implementation details of our prototype.

The code is available at: github.com/albertlinde/Legion.
Overlay networks: To achieve the threshold of K neighbors we

do the following. Upon joining the system, a client resorts to the
centralized component (either the Legion server or another web ser-
vice accessed through a specialized adapter) to obtain the identifiers
of nodes that currently have an open connection to the centralized
infrastructure. Using this information, the client establishes a con-
nection to a nearby neighbor and another to a distant neighbor (for
these connections the centralized infrastructure is leveraged to per-
form the WebRTC signaling protocol). Random walks over the ex-
isting overlay are then used by the new client to find other nearby
and distant neighbors to fill its neighborhood.

To classify peers as being either nearby or distant we resort to the
previously described scheme, where we use 4 distinct sites, which
are endpoints of Amazon EC2 Web API (scattered throughout 4
different data centers). While different distance functions can be
employed over the virtual coordinates associated with each client,
in our prototype we use a function that categorizes a client to be
distant if the difference between at least two coordinates in the 4D
virtual space are equal or above 70, and nearby otherwise (we have
experimentally asserted that this strategy yields adequate results).

Selection of Active Clients: In our design, we use a small subset
of clients (that we dub active clients) to upload and download up-
dates over objects to and from the centralized infrastructure and to
monitor the cryptographic key associated with each container. To
select these clients we use a bully algorithm [19] where initially all
clients act as an active client, and periodically, every Tms, sends to
its nearby overlay neighbors a message containing its unique iden-
tifier – in our experiments we set T = 7000ms. Whenever a client
receives a notification from a neighbor whose identifier is lower
than its own, it switches its own state to become a passive client,
and stops disseminating periodic announcements. To address the
departure or failure of active clients, if a passive client does not
receive an announcement for more than 3 × T ms, it switches its

288

github.com/albertlinde/Legion

own state back to become an active client (the factor of 3 is used to
avoid triggering this process unnecessarily).

Passive clients disable their connection to the centralized infras-
tructure. The result of executing this algorithm is that only a small
subset of (non-neighboring) clients remain active clients.

Security Mechanisms: For the symmetric cryptography algo-
rithm, we used AES operating in block cipher mode, using a key
of 128 bits. We use RSA, configured with a key of 2048 bits, for
generating and verifying the signature of the messages issued by
our Node.js server. Our implementation resorts to the Forge [1]
JavaScript library to implement all cryptographic operations.

STUN Service: In our prototype we have resorted to publicly
available Google STUN servers. However, this is a configurable
aspect in our prototype, and can easily be modified to use privately
owned and managed servers if an application operator desires.

Implementation complexity: We have used Count Lines
of Code [14] and verified that the code for our GDriveRT adapters
has 1.768 JavaScript LOC, while the whole implementation of Le-
gion (including the simple server for materializing the centralized
component) has 4.639 JavaScript LOC.

6. EVALUATION
This section presents an evaluation of Legion with an emphasis

on the operation of Legion when using the adapters to inter-operate
with the GDriveRT infrastructure (except if specifically stated in
our experiments, we ran Legion with all GDriveRT adapters en-
abled and with support for legacy clients disabled). Our evaluation
mainly focus on two complementary aspects. We start with an anal-
ysis of our experience in adapting existing GDriveRT applications
to leverage Legion. Then, we present an experimental evaluation
of our prototype, comparing it to the centralized infrastructure of
GDriveRT regarding the following practical aspects: (i) What is
the impact on update propagation latency? (ii) What is the im-
pact on application performance? (iii) How does the system be-
have when the central server becomes (temporarily) unavailable?
(iv) What is the impact of using Legion in terms of load imposed
on the central component and on individual clients? (v) What is the
overhead for supporting seamless integration with legacy clients?

6.1 Designing Applications
In this section, we describe a set of web applications that we have

ported to Legion using the GDriveRT adapters.
Google Drive Realtime Playground: The Google Drive Real-

time Playground [2] is a web application showcasing all data-types
supported by GDriveRT. We ported this application to Legion by
changing only 2 lines in the source code (see § 4).

Multi-user Pacman: We adapted a JavaScript version of the
popular arcade game Pacman [3] to operate under the GDriveRT
API with a multi-player mode. We also added support for multi-
ple passive observers that can watch a game in real time. In our
adaptation up to 5 players can play at the same time, one player
controlling Pacman (the hero) and the remaining controlling each
of the four Ghosts (enemies).

The Pacman client is responsible for computing, and updating
the adequate data structures, with the official position of each en-
tity. Clients that control Ghosts only manipulate the information
regarding the direction in which they are moving. If no player con-
trols a Ghost, its direction is determined by the the original game’s
AI, running in the client controlling Pacman.

In this game, we employed the following data types provided by
the GDriveRT API: (i) a map with 5 entries, one for Pacman and
the remaining for each Ghost, where each entry contains the iden-
tifier (ID) of the player controlling the character (each user gener-

ates its own random ID); (ii) a list of events, that is used as a log
for relevant game events, which include players joining/leaving the
game, a Ghost being eaten, Pacman being captured, etc. (iii) a list
representing the game map, used to maintain a synchronized view
of the map between all players. This list is modified, for instance,
whenever a pill is eaten by Pacman; (iv) a map with 2 entries, one
representing the width and the other the height of the map. This
information is used to interpret the list that is used to encode the
map; (v) a map with 2 entries, one used to represent the state of
the game (paused, playing, finished) and the other used to store
the previous state (used to find out which state to restore to when
taking the game out of pause); finally, (vi) 5 maps, one for each
playable character, with the information about each of these enti-
ties, for maintaining a synchronized view of their positions (this is
only altered when the corresponding entity changes direction, not
at every step), directions, and if a ghost is in a vulnerable state.

Along with extending and porting this application to use the
GDriveRT API, we also implemented the same game (with all func-
tionality) using Node.js as a centralized server for the game through
which the clients connect using web-sockets (this implementation
does not leverage Legion). This enables us to investigate the effort
in implementing such an interactive application using both alterna-
tives. The Node.js implementation of the game is approximately
2.200 LOC for the client code, and 100 LOC for the server. In
contrast, the implementation leveraging the GDriveRT API has ap-
proximately 1.620 LOC for the client code, and 40 lines of code for
the server side (used to run multiple games in parallel). This shows
that an API such as the one provided by GDriveRT and Legion
simplifies the task of designing such interactive web applications.

Creating the Legion version (using the GDriveRT adapters) re-
quired to change only two lines of code of the GDriveRT version
(as described before). From a user perspective, the Legion version
runs much smoother, which is also shown by our evaluation pre-
sented further ahead.

Spreadsheet: We have also explored an additional application:
a collaborative spreadsheet editor. Each spreadsheet represents a
grid of uniquely identifiable rows and columns, whose intersection
is represented by an editable cell. Each cell can hold numbers, text,
or formulas that can be edited by different users.

A prototype of the spreadsheet web application was built using
AngularJS and supporting online collaboration through GDriveRT.
The spreadsheet cells were modeled using a GDriveRT map. Each
cell was stored in the map using its unique identifier (row-column)
as key. Porting this application to the Legion API only required the
change of 2 lines of code (as discussed previously).

Discussion: Our experience with porting these applications to
leverage Legion shows that doing so is simple, as the programmer
can easily use our GDriveRT adapters. Furthermore, this shows that
carefully designing our framework to expose (through adapters)
APIs that are similar to existing Web infrastructures is paramount
to promote easy adoption of our solutions.

6.2 Experimental evaluation
In our experimental evaluation, we compare Legion, with and

without the use of adapters, against GDriveRT, as a representative
system that uses a traditional centralized infrastructure.

In our experiments, we have deployed clients in two Amazon
EC2 datacenters, located at North Virginia (us-east-1) and Oregon
(us-west-2). In each DC, we run clients in 8 m3.xlarge virtual ma-
chines with 4 vCPUs of computational power and 15GB of RAM.
Unless stated otherwise, clients are equally distributed over both
DCs. The average round-trip time measured between two machines
in the same DC is 0.3 ms and 83 ms across DCs.

289

 25

 50

 75

 100

10ms
50ms

100ms
500ms

1s 5s 10s 50s

C
D

F
(%

)

Latency
Legion 4
Legion 8

Legion 16
Legion 32
Legion 64

GDriveRT 4
GDriveRT 8

GDriveRT 16
GDriveRT 32
GDriveRT 64

 25

 50

 75

 100

10ms
50ms

100ms
500ms

1s 5s 10s 50s

C
D

F
(%

)

Latency
Legion 4
Legion 8

Legion 16
Legion 32
Legion 64

GDriveRT 4
GDriveRT 8

GDriveRT 16
GDriveRT 32
GDriveRT 64

 25

 50

 75

 100

10ms
50ms

100ms
500ms

1s 5s 10s 50s

C
D

F
(%

)

Latency
Legion 4
Legion 8

Legion 16
Legion 32
Legion 64

GDriveRT 4
GDriveRT 8

GDriveRT 16
GDriveRT 32
GDriveRT 64

 25

 50

 75

 100

10ms
50ms

100ms
500ms

1s

C
D

F
(%

)

Latency (ms)
Legion 4
Legion 8
Legion 4
Legion 8

GDriveRT 4
GDriveRT 4
GDriveRT 8
GDriveRT 8

Legion 4
Legion 8

 25

 50

 75

 100

10ms
50ms

100ms
500ms

1s

C
D

F
(%

)

Latency (ms)
Legion 4
Legion 8
Legion 4
Legion 8

GDriveRT 4

GDriveRT 4
GDriveRT 8
GDriveRT 8

Legion 4
Legionasdasd8

(a) All clients within the same datacenter

 25

 50

 75

 100

10ms
50ms

100ms
500ms

1s 5s 10s 50s

C
D

F
(%

)

Latency (ms)
Legion 4
Legion 8

Legion 16
Legion 32
Legion 64

GDriveRT 4
GDriveRT 8

GDriveRT 16
GDriveRT 32
GDriveRT 64

(b) Clients distributed over 2 Datacenters

Figure 2: Latency for the propagation of updates.

Latency: To measure the latency experienced by clients for ob-
serving updates, we conduct the following experiment. Each client
inserts in a shared map a key-value pair consisting of his identifier
and a timestamp. When a client observes an update on this map,
it adds to a second map, as a reply, another pair concatenating the
originating identifier and the replier’s identifier as the key, and as
value an additional timestamp. When a client observes a reply to
his message, it computes the round-trip time for that reply, with
latency being estimated as half of that time. All clients start by
writing to the first map at approximately the same time and reply to
all identifiers added by other clients. Thus, this simulates a system
where the load grows quadratically with the number of clients.

Figure 2 presents the latency observed by all clients for both Le-
gion and GDriveRT. The results show that latency using Legion is
much lower than using GDriveRT for any number of clients. The
main reason for this is that the propagation of updates does not have
to incur a round-trip to the central infrastructure in Legion. Further-
more, for 64 clients, the 95th percentile for GDriveRT is almost an
order of magnitude above Legion, suggesting that Legion’s peer-
to-peer architecture is better suited to handle higher loads than the
centralized architecture of GDriveRT.

Multi-Player Pacman Performance: We now show the impact
of Legion on the performance of applications in the context of our
Multi-player Pacman game.

To that end we conducted an experiment with volunteers, where
we had five users playing Pacman (one player controlling Pacman,
and four players for each of the ghosts). This experiment was con-
ducted using five machines, in a local area network. Machines were
running Ubuntu and clients executed in Firefox.

We focus our experiments in measuring the displacement of en-
tities in relation to their official position. As explained before, each
client updates an object with the direction of its movement. The
Pacman client computes and updates the official position of each
entity periodically. Each client independently updates its interface
based on the known direction of movement and the latest official
positions. Displacement captures the difference between the posi-
tion computed by a client and the received official position upon
receiving an update. When displacement has large values, users
see entities jumping on the game map. In particular we measure:
(i) the displacement of Pacman in relation to an eaten pill when
an update reporting the pill being eaten is received by a client con-
trolling a Ghost; and (ii) the displacement of Pacman and Ghosts
when a client controlling a ghost receives an update for a posi-
tion. Figure 3 reports the obtained results where the displacement
is measured in tiles (the square unit that forms the interface). The
board size of Pacman was 19×22 tiles featuring approximately, 59

turning points. Pacman and Ghosts move at approximately 3.33
tiles per second.

Figure 3(a) shows that when using Legion the interface is much
more synchronized in relation to the real state of the system, show-
ing that Pacman is visible by other players much closer to the eaten
pill than when using the GDriveRT version of the game. Figure 3(b)
reinforces these results showing that when using Legion the dis-
placement of entities in the game interface is significantly lower
when compared with the game version that only uses GDriveRT,
which is unable to send updates to all clients at an adequate rate.

Effect of disconnection: We study the effect of disconnection
by measuring the fraction of updates received by a client. In the
presented results, clients share a map object, and each client exe-
cutes one update per second to the map (similar behavior was ob-
served with other supported objects). We simulate a disconnection
from the Google servers, by blocking all traffic to the Google do-
main using iptables, 80 seconds after the experiment starts. The
disconnection lasts for 100 seconds, after which rules in iptables
are removed so that connections can again be re-established.

Figure 4 shows, at each moment, the average fraction of updates
observed by clients since the start of the experiment (computed by
dividing the average number of updates received by the total num-
ber of updates executed). As expected, the results show that during
the disconnection period, GDriveRT clients no longer receive new
updates, as the fraction of updates received decreases over time.
When connectivity is re-established, GDriveRT is able to recover.
With Legion, as updates are propagated in a peer-to-peer fashion,
the fraction of updates received is always close to 100%.

We note however, that while servers remain inaccessible, new
clients cannot join the system. However, when leveraging Legion,
clients that are active when the server becomes unavailable can con-
tinue operating regularly without noticing the server unavailability.

Network load: We now study the network load induced by our
approach. To this end, we run experiments where 16 clients share a
map object. Each client executes one update per second. The work-
load is as follows: 20% of updates insert a new key-value pair and
80% replace the value of an existing key selected randomly. The
keys and values are strings of respectively 8 and 16 characters. We
measure the network traffic by using iptraf, an IP network monitor.

In these experiments, we used the following configurations: Le-
gion w/ Node.js: that uses our Legion server as backend. Legion w/
GDriveRT: that uses GDriveRT documents as backend. GDriveRT:
that uses the original GDriveRT document as backend.

Figure 5(a) shows the total network load of the setup process,
which entails making the necessary connections to the infrastruc-
ture and peer-to-peer connections. The incurred load using our own
backend server is due to clients requiring to use this component to

290

 0

 1

 2

 3

 0 20 40 60 80 100 120 140

D
is

ta
nc

e
of

 P
ac

m
an

 to
 th

e
 e

at
en

 p
ill

(ti
le

s)

Received ’pill-eaten’ Updates

Legion
GDriveRT

(a) Pacman displacement to eaten pills

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120 140

D
is

pl
ac

em
en

t (
til

es
)

to
 o

ffi
ci

al
 p

os
iti

on

Received Position Updates

Legion
GDriveRT

(b) Pacman and Ghosts Displacement

Figure 3: Muti-User Pacman Performance assessment.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

80 s 180 sR
ec

ei
ve

d
O

pe
ra

tio
ns

 p
er

 c
lie

nt
 d

iv
id

ed
 b

y
To

ta
l O

pe
ra

tio
ns

Time (seconds)

Legion
GDriveRT

Figure 4: Effect of disconnection

 0
 5

 10
 15
 20
 25
 30
 35

Se
rv

er
 lo

ad
 (K

B/
s)

Legion w/ Node.js
Legion w/ GDriveRT

Legion w/ GDriveRT w/ Legacy
GDriveRT

 0 5
 10 15 20 25 30 35

Se
rv

er
 lo

ad
 (K

B/
s)

Legion w/ Node.js
Legion w/ GDriveRT

GDriveRT
Legion w/ GDriveRT w/ Legacy

 0
 1500
 3000
 4500
 6000
 7500
 9000

Se
tu

p
lo

ad
 (K

B)

(a) Server load during setup
 0
 5

 10
 15
 20
 25
 30
 35

Se
rv

er
 lo

ad
 (K

B/
s)

(b) Server load during operations
 0
 3
 6
 9

 12
 15

Setup OperationsC
lie

nt
 b

an
dw

id
th

 (K
B/

s)

Distant Nearby

(c) Client-to-client load

Figure 5: Network load.

connect to each other initially (WebRTC signaling). Legion using
GDriveRT as backend has a slightly higher cost due to the over-
head of performing signaling through the infrastructure, which is
less efficient. In both cases only few clients obtain the initial ob-
ject and propagate to other clients. Finally, in GDriveRT all clients
download the shared data from the infrastructure.

Figure 5(b) shows the network load of the server without con-
sidering the initial setup load (computed by adding the traffic of all
clients to and from the centralized infrastructure) for all competing
alternatives. Results show that the load imposed over the central-
ized component is much lower when using Legion with GDriveRT
as backend than when using only GDriveRT. This is expected, as
only a few clients (active clients) interact with the GDriveRT in-
frastructure, being most interactions propagated directly between
clients. Interestingly, the use of our server leads to an even lower
load on the centralized component, this happens not only because
the signaling mechanism used to establish new WebRTC connec-
tions among clients and the process for replica synchronization
with the server is more efficient, but also because the data represen-
tation used by our backend is significantly more compressed. We
run an additional configuration, (Legion with GDriveRT w/ Legacy)
that uses GDriveRT documents as backend and synchronizes with
the original document every 5 seconds. Supporting legacy clients
(i.e., synchronizing with the original document) incurs a non neg-
ligible overhead. This happens because the mechanism used re-
quires a large number of accesses to the centralized infrastructure
as to infer which operations should be carried from legacy clients
to the Legion clients and vice versa. However, even with support
for legacy clients enabled, Legion induces lower load on the cen-
tralized component when compared with GDriveRT.

Figure 5(c) reports the average peer-to-peer communication traf-
fic for each client during the setup of WebRTC connections (Setup)
and while clients issue and propagate operations (Operations). The
results show that the traffic of each client is larger than the traffic

of each client with the server in GDriveRT (which can be approxi-
mated by dividing the server load – in Figure 5(b) – by the number
of clients). This happens because our dissemination strategy has
inherent redundancy, whereas in GDriveRT there are no redundant
transmissions between each client and the centralized infrastruc-
ture. However, an average under 14KBps does not represent a huge
fraction of available bandwidth nowadays. Furthermore the use of
our location aware overlay leads to a network usage pattern where
the amount of data sent to distant nodes is significantly lower that
that sent to nearby nodes.

7. FINAL REMARKS
In this paper we presented the design of Legion, a framework

that allows the development of web applications with seamless sup-
port for replication at the client machine leveraging peer-to-peer
interactions to propagate operations among clients. Furthermore,
we presented the design of adapters that enable Legion to lever-
age GDriveRT for (potentially) multiple purposes namely, storage
backend; WebRTC signaling; authentication and key management;
exposing an API akin to that of GDriveRT; and finally, an optional
mechanism to support the co-existence of legacy clients.

The evaluation of our prototype shows that latency for update
propagation is much lower using Legion when compared with the
use of GDriveRT. Furthermore, load to the centralized infrastruc-
ture is greatly reduced by leveraging peer-to-peer interactions. Fi-
nally, we show that clients are able to interact while servers are
temporarily unavailable. As future work, we plan to study how
to support applications with thousands of simultaneous users, and
to design and implement adapters to integrate Legion with storage
services such as Cassandra, Redis, and Antidote.

291

8. REFERENCES
[1] Forge. github.com/digitalbazaar/forge.
[2] Google Drive Realtime Playground. github.com/

googledrive/realtime-playground.
[3] Original implementation of pacman for browsers.

github.com/daleharvey/pacman.
[4] Parse. parse.com.
[5] WebRTC. www.webrtc.org/.
[6] P. S. Almeida, A. Shoker, and C. Baquero. Efficient

state-based crdts by delta-mutation. In Proc. of NETYS’15,
Morocco, 2015.

[7] S. Almeida, J. Leitão, and L. Rodrigues. Chainreaction: A
causal+ consistent datastore based on chain replication. In
Proc. of EuroSys’13, 2013.

[8] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M.
Hellerstein, and I. Stoica. Highly available transactions:
Virtues and limitations. Proc. of VLDB Endow., 7(3), Nov.
2013.

[9] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu,
and Y. Minsky. Bimodal multicast. ACM TOCS, 17(2), 1999.

[10] N. Carvalho, J. Pereira, R. Oliveira, and L. Rodrigues.
Emergent structure in unstructured epidemic multicast. In
Proc. of DSN’07, UK, June 2007.

[11] S. Castiñeira and A. Bieniusa. Collaborative offline web
applications using conflict-free replicated data types. In
Proc. of PaPoC ’15 Workshop, 2015.

[12] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and
R. Yerneni. Pnuts: Yahoo!’s hosted data serving platform.
Proc. of VLDB Endow., 1(2), 2008.

[13] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
et al. Spanner: Google’s globally distributed database. ACM
TOCS, 31(3), 2013.

[14] A. Danial. Cloc–count lines of code. Open source, 2009.
[15] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available
key-value store. SIGOPS Oper. Syst. Rev., 41(6), 2007.

[16] EtherpadFoundation. Etherpad. etherpad.org.
[17] Facebook Inc. Continuing to build news feed for all types of

connections. goo.gl/Q06CaL, Dec. 2015.
[18] A. Ganesh, A.-M. Kermarrec, and L. Massoulié. Scamp:

Peer-to-peer lightweight membership service for large-scale
group communication. In Net. Group Comm. 2001.

[19] H. Garcia-Molina. Elections in a distributed computing
system. IEEE Tran. on Comp., C-31(1), Jan 1982.

[20] J. Gentle. ShareJS API. github.com/share/ShareJS.
[21] Google Inc. Google Drive Realtime API. developers.

google.com/google-apps/realtime/overview.
[22] C. Jay, M. Glencross, and R. Hubbold. Modeling the effects

of delayed haptic and visual feedback in a collaborative
virtual environment. ACM Trans. Comput.-Hum. Interact.,
14(2), Aug. 2007.

[23] A. D. Joseph, A. F. de Lespinasse, J. A. Tauber, D. K.
Gifford, and M. F. Kaashoek. Rover: A toolkit for mobile
information access. In Proc. SOSP’95, 1995.

[24] Joyent Inc. Node. js, 2014.

[25] J. J. Kistler and M. Satyanarayanan. Disconnected operation
in the coda file system. ACM TOCS, 10(1), Feb. 1992.

[26] J. Leitão, J. P. Marques, J. Pereira, and L. Rodrigues. X-bot:
A protocol for resilient optimization of unstructured overlay
networks. IEEE TPDS, 23(11), Nov 2012.

[27] J. Leitão, J. Pereira, and L. Rodrigues. Epidemic broadcast
trees. In Proc. of SRDS’07. IEEE, 2007.

[28] J. Leitão, J. Pereira, and L. Rodrigues. Hyparview: A
membership protocol for reliable gossip-based broadcast. In
Proc. of DSN’07. IEEE, 2007.

[29] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Don’t settle for eventual: Scalable causal
consistency for wide-area storage with COPS. In Proc. of
SOSP’11, 2011.

[30] R. Mahy, P. Matthews, and J. Rosenberg. Traversal Using
Relays around NAT (TURN): Relay Extensions to Session
Traversal Utilities for NAT (STUN), RFC 5766. Technical
report, IETF, Apr. 2010.

[31] D. A. Nichols, P. Curtis, M. Dixon, and J. Lamping.
High-latency, low-bandwidth windowing in the jupiter
collaboration system. In Proc. UIST’95, 1995.

[32] D. Perkins, N. Agrawal, A. Aranya, C. Yu, Y. Go, H. V.
Madhyastha, and C. Ungureanu. Simba: Tunable End-to-end
Data Consistency for Mobile Apps. In Proc. of EuroSys ’15,
2015.

[33] V. Ramasubramanian, T. L. Rodeheffer, D. B. Terry,
M. Walraed-Sullivan, T. Wobber, C. C. Marshall, and
A. Vahdat. Cimbiosys: A platform for content-based partial
replication. In Proc. of NSDI’09, 2009.

[34] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski.
Conflict-free Replicated Data Types. In Proc. of 13th SSS’11,
2011.

[35] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional
storage for geo-replicated systems. In Proc. of SOSP’11,
2011.

[36] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. ACM SIGCOMM Computer
Communication Review, 31(4), 2001.

[37] C. Sun and C. Ellis. Operational transformation in real-time
group editors: issues, algorithms, and achievements. In Proc.
of Comp. supported cooperative work, 1998.

[38] D. B. Terry. Replicated Data Management for Mobile
Computing. Synthesis Lectures on Mobile and Pervasive
Computing. Morgan & Claypool Publishers, 2008.

[39] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in
bayou, a weakly connected replicated storage system. In
Proc. of SOSP’95, 1995.

[40] A. van der Linde, J. Leitão, and N. Preguiça. ∆-crdts:
Making δ-crdts delta-based. In Proc. of the PaPoC’16
Workshop, United Kingdom, 2016. ACM.

[41] S. Voulgaris, D. Gavidia, and M. Van Steen. Cyclon:
Inexpensive membership management for unstructured p2p
overlays. J. of Net. & Sys. Manag., 13(2), 2005.

[42] M. Zawirski, N. Preguiça, S. Duarte, A. Bieniusa,
V. Balegas, and M. Shapiro. Write Fast, Read in the Past:
Causal Consistency for Client-side Applications. In Proc. of
Middleware’15. ACM/IFIP/Usenix, Dec. 2015.

292

github.com/digitalbazaar/forge
github.com/googledrive/realtime-playground
github.com/googledrive/realtime-playground
github.com/daleharvey/pacman
parse.com
www.webrtc.org/
etherpad.org
goo.gl/Q06CaL
github.com/share/ShareJS
developers.google.com/google-apps/realtime/overview
developers.google.com/google-apps/realtime/overview

	Introduction
	Related Work
	System Design
	Communications
	Communication Module
	Overlay Network Logic
	Connection Manager

	Object Store
	Security Mechanisms

	Adapters: GDriveRT
	Data model
	Legion functionality
	Support for Legacy Applications
	Security in GDriveRT

	Implementation Details
	Evaluation
	Designing Applications
	Experimental evaluation

	Final remarks
	References

